Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE
In Mathematics (9ST0) Paper 2 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 9STO_02_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Paper 2: Statistical Inference Mark Scheme

Question	Scheme	Marks	AO	Notes
1(a)	$\bar{x}=4.4 \quad s=2.3 \quad n=36$			
				Use of 4.4 and $2.3 / \sqrt{ } 36$
			1.3	(possibly implied by correct interval) PI
		B1	1.3	$\begin{aligned} & t_{35}=2.72(4) \text { or } \\ & \mathrm{z}=2.58 \text { used } \\ & \text { (possibly implied } \\ & \text { by correct } \\ & \text { interval) } \\ & \text { PI } \end{aligned}$
	Using t, CI is $(3.36,5.44)$ Using z, CI is $(3.41,5.39)$	A1	1.3	Accept CI: (awrt 3.4, awrt 5.4)
				If z or t values seen, must be 2.58 or 2.72
1(b)	Because the sample is "large"... or $n>30 \ldots$	E1	3.1a	
	... so the Central Limit Theorem applies.	E1	3.1a	allow CLT
1(c)	It should be a random sample of dolphins. or The population of dolphins in that area should be large.	E1	3.1a	If mention independence must also see dolphins
	Total	6		

	no evidence to support Robert's suspicion.			
$\mathbf{5 (b)}$	Yes it is reasonable to assume this because:	E1dep	3.1 a	dependent on following E1
	Any one of the following -Different people are used in each group A random sample was initially used Random assignment of versions of the test was used	E1	3.1 a	

	customers visiting the ATM during the evening. Lara's assumption is not reasonable.	A1	2.1a	Alternatively, comparison using p-value, $p=0.002(0)<$ 0.05 Correct conclusion in context
	Notes (i) No pooling gives $\sum \frac{(O-E)^{2}}{E}=14.7 \sim 15.3$ for max M1 M0 A1 M1 A0 B0 B1ft M1 A0 (5/9) (iii) If E 's taken to nearest whole number then : if pooled, $\chi^{2}=12.2$ for M1 M1 A0 M1 A0 B1 B1 M1 A0 (6/9) if not pooled, $\chi^{2}=14.7$ for (4/9) scored as in(i).			
6(c)	(Customers do not appear to be arriving) at random/indep of each other (Customers do not appear to be arriving) at a constant average rate. Most of the time nobody arrives. Four or more customers very unlikely Some relevant comparison of O's and E's in context... eg More observed than expected in first and last categories suggests there are more 'busy' and 'quiet' times than a constant rate through the evening would suggest.	$\begin{gathered} \mathrm{E} 1, \mathrm{E} 1 \\ \mathrm{E} 1 \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{~b} \\ & 3.1 \mathrm{~b} \\ & 3.1 \mathrm{~b} \end{aligned}$	E1 for each sensible comment (max E2) For referencing customers/people in context
	Total	16		

$\left.\begin{array}{|l|l|l|l|} & \begin{array}{l}\text { eg MS between subjects (174.86) is the } \\ \text { largest (ie subjects are the largest source of } \\ \text { variation in times) } \\ \text { OR }\end{array} \\ \begin{array}{ll}\text { F test for difference between subjects gives F } \\ =13.5 \text { which is highly significant }(1 \% \mathrm{CV}= \\ 5.636,5 \% \mathrm{CV}=3.326) \\ \text { OR } \\ \text { demonstrating that a completely randomised } \\ \text { analysis obtained by pooling gives new error } \\ \text { MS of 1103.5/15 = 66.9 and new ts for drinks } \\ \text { of F=1.61. This is not significant so } \\ \text { difference between drinks is then not } \\ \text { detected. }\end{array} & \text { A1 }\end{array} \right\rvert\,$ 3.1a $\left.\begin{array}{l}\text { For completely } \\ \text { correct numbers or } \\ \text { calculations }\end{array}\right\}$

