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1	 (a)	 State whether the following sequences converge, diverge or oscillate.

		  (i)	 2n2

n + 3	 [1]

	
	
	
	
	

		  (ii)	 cos (nπ
3 )	 [1]

	
	
	
	
	

		  (iii)	
5n

3n – 1	 [1]

	
	
	
	
	



[Turn over

*36AMT1103*

*36AMT1103*

13786

	 (b)	 Find 
∞

Σ
r = 1

3 ( 2
5 )r	

[5]
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	 (c)	 The first three terms of an arithmetic progression are

x,  3x + 1,  3x2      where x > 0

		  (i)	 Find the value of x.	 [4]
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		  (ii)	 Find the sum of the first 10 terms of this arithmetic progression.	 [4]
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2	 The shaded region R, as shown in Fig. 1 below, is the major segment of a circle of 
	 radius r cm with angle AOB = π3 radians.

π
3

A B

r r

O

Fig. 1

	 (i)	 Find the perimeter of R in terms of r.	 [3]
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	 The perimeter of R is (10π + 6) cm.

	 (ii)	 Find the value of r.	 [2]

	
	
	
	
	
	

	 (iii)	Find the area of R.	 [5]
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3	 (a)	 Simplify as far as possible
  
		  			

4x2 − 25
3x2 + 14x + 8  ÷  

6x − 15
x + 4 	 [5]

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	



[Turn over

*36AMT1109*

*36AMT1109*

13786

	 (b)	 Find, in ascending powers of x, the expansion of

x + 3
√x + 2

		  up to and including the term in x2	 [6]
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4	 (a)	 The graph of the function y = f (x) is shown in Fig. 2 below.

O P (2, 0)Q (0, –1)

y

x

Fig. 2

		  The curve cuts the axes at P(2, 0) and Q(0, –1).

		  Fig. 3 below shows five different transformations of y = f (x).

O P′ (4, 0)

y

x

Q′ (2, 1)

Graph A

OQ′ (–1, 0)

y

x

P′ (0, 2)

Graph B

OO

Q′ (–3, –2)

Q′ (–2, 1)

yy

xx
P′ (–1, 0)P′ (1, 0)

Graph DGraph C
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O P′ (2, 0)
Q′ (0, 1)

y

x

Graph E

Fig. 3

	 Complete the following statements:

	 (i)	 y = 2f (x + 3)	 is represented by Graph …………………	 [1]

	 (ii)	 y = –f (x – 2)	 is represented by Graph …………………	 [1]

	 (iii)	y = |f (x)|	 is represented by Graph …………………	 [1]

	 (iv)	y = f –1 (x)	 is represented by Graph …………………	 [1]
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	 (b)	 The functions g and h are defined by:

		  			  g(x) = 2 + cos x	 x ∈   0 G H I J x G H I J π

		  			  h(x) = 1
1 + x 	 x ∈   x ≠ –1

 

		  (i)	 State the range of g(x).	 [2]

	
	
	

		  (ii)	 Find the inverse function h–1 (x), stating its domain.	 [5]
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	 (iii)	Find the composite function hg(x), stating its domain.	 [4]
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5	 The points of intersection of the curves

y = cosec2 3x

and

y = x2 + 1

	 can be found by solving the equation

cosec2 3x – x2 – 1 = 0
	

	 (i)	 Show that this equation has a root between x = 0.3 and x = 0.5	 [3]
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	 It is known that there is only one root α in the interval [0.3, 0.5].

	 (ii)	 By taking x = 0.3 as a first approximation and using the Newton-Raphson 
method once, find a better approximation to α.	 [6]
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6	 (a)	 Prove that

		  		
cos 2θ – cos θ + 1

sin 2θ – sin θ  ≡ cot θ	 [6]
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	 (b)	 Solve the equation 

					    tan (θ – 45°) = 6 tan θ      where 0° G H I J θ G H I J 360°	 [7]
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7	 (a)	 A curve is defined by the parametric equations

x = sin t + cos t
y = 4 – 3 sin 2t

		  Find the Cartesian equation of this curve.	 [7]
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	 (b)	 A curve is given by the equation

3x + 5xy2 – 16 = 2(x + y)2

		  Find the equation of the tangent to the curve at the point (1, 3).
		  Leave your answer in the form ax + by + c = 0, where a, b and c are integers.	 [9]
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8	 (a)	 The curved surface of a glass bowl can be modelled by rotating the curve 

y = 3 tan 4x

		  between x = 0 and x = π
16     through 2π radians about the x-axis.

		  Find, in terms of π, the maximum volume of liquid that the bowl can contain.	 [9]
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	 (b)	 Find  ∫ xe2x dx	 [7]
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	 (c)	 Using the substitution

u = x – 3

		  find the exact value of 

		  			  ∫
6

4

 x(x – 5)
(x – 3)2 dx	 [9]
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9	 (i)	 Show that (x + 3) is a factor of

		  			  2x3 + 11x2 + 12x – 9	 [3]
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	 (ii)	 Hence find

					    x2 + 3x + 35
2x3 + 11x2 + 12x – 9∫  dx	 [15]
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10	 In a factory, a biological substance is placed in a large tank.

	 During the production process, the biological substance reproduces at a 
	 rate of   0.25A kg per hour, where A kg is the amount of substance present at time  
	 t hours.

	 At the same time, the biological substance is pumped out of the tank at a constant 
rate of 50 kg per hour.

	 (i)	 By setting up and solving a suitable differential equation, show that

				    A = 4ke0.25t + 200	 [7]

		  where k is a constant.
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	 At time t = 0, A = 190

	 (ii)	 Show that 
				    A = 200 – 10e0.25t	 [2]
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	 The tank must be completely empty by the end of each production shift.
	
	 (iii)	Find the minimum length of time for each shift.
		  Note that a production shift always lasts for a whole number of hours.	 [3]
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	 The factory management decides to change to 8-hour production shifts.

	 They plan to manage this by simply reducing the amount of biological substance in 		
	 the tank at time t = 0

	 (iv)	Find the maximum amount of biological substance at time t = 0 which makes this 
change feasible, giving your answer to 1 decimal place.	 [5]
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