Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

C300UA0-1

Mark

Awarded

FRIDAY, 19 MAY 2023 - MORNING

MATHEMATICS – Component 1 Non-Calculator Mathematics HIGHER TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

An additional formulae sheet.

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** the questions in the spaces provided.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.

Unless stated, diagrams are not drawn to scale.

Scale drawing solutions will not be acceptable where you are asked to calculate.

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

2.	2			
3.	5			
4.	4			
5.	5			
6.	5			
7.	6			
8.	3			
9.	2			
10.	5			
11.	5			
12.	4			
13.	5			
14.	5			
15.	5			
16.	5			
17.	9			
18.	6			
19.	6			
20.	3			
21.	5			
22.	4			
23.	4			
24.	9			
25.	5			
Total	120			
© WJEC CBAC Ltd. SJJ*(S23-C300UA0-				

For Examiner's use only

Maximum

Mark

3

Question

1.

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a sphere = $\frac{4}{3}\pi r^3$

Volume of a cone = $\frac{1}{3}\pi r^2 h$

Kinematics formulae

Where a is constant acceleration, u is initial velocity, v is final velocity, s is displacement from the position when t=0 and t is time taken:

$$v = u + at$$

$$s = ut + \frac{1}{2}at^2$$

$$v^2 = u^2 + 2as$$

	The lengths of the three sides of a triangle are in the ratio 3 : 5 : 7.					
	(a)	What fraction of the perimeter is the longest side of this triangle?	[1]			
	(b)	The perimeter of this triangle is 60 cm. Find the length of each of the three sides of this triangle.	[2]			
		cm, cm, cm,				
2.	The	bearing of Q from P is 140°.				
	Find	the bearing of <i>P</i> from <i>Q</i> .	[2]			

© WJEC CBAC Ltd. (C300UA0-1)

Turn over.

(a)	Wor	m of a sequence is given by $2n+9$. k out the difference between consecutive terms.	
(b)	(i)	Solve $2n+9 < 99$.	
	(ii)	Write down the number of terms of this sequence that are less than 99.	
		Number of terms =	

C300UA01	05

	lames has been an holiday to the LICA and is flying home to the LIK
٦	James has been on holiday to the USA and is flying home to the UK. The price of a gift in a shop at the airport is \$65. The price of the same gift online is €60 including delivery.
(On the day of his flight, the exchange rates were as follows.
	£0.80 = \$1
	£1 = €1.20
I	Is it cheaper to buy the gift at the airport or online?
	Airport Online
5	Show how you decide.
••	
••	
••	
••	
••	

© WJEC CBAC Ltd. (C300UA0-1)

Turn over.

Examiner only

5.

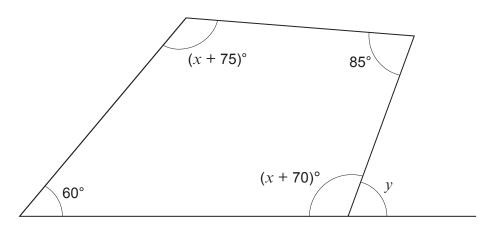
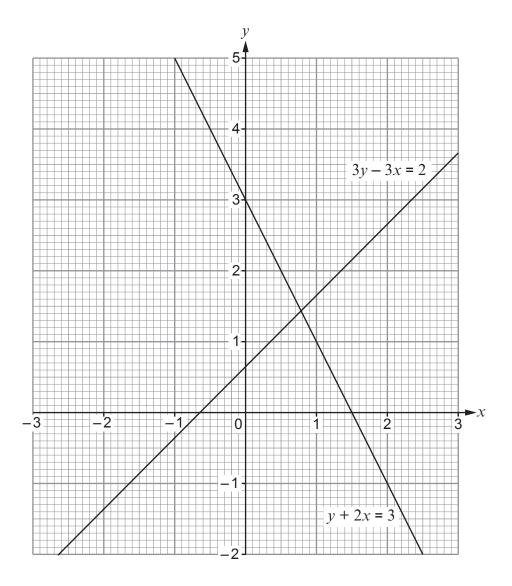


Diagram not drawn to scale

The diagram shows a quadrilateral.	
Use algebra to find the size of the exterior angle <i>y</i> .	[5]
	· · · · · · · · ·
	· · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·

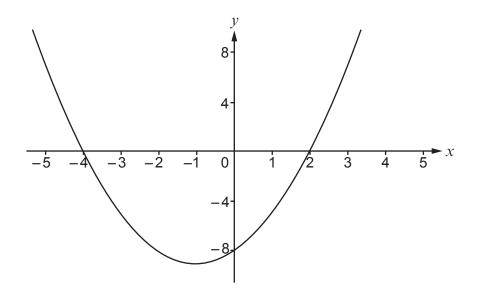

401	
00	
C30	07

(a)	Sam cycled south for 16 km. He then turned and cycled east . When he stopped for a rest, the shortest distance back to his starting point was 20	km.
	Calculate how many kilometres Sam cycled while travelling east.	[3]
	North	
		<u>.</u>
		•••••
		······································
(b)	Sam cycled the 20 km back to his starting point at a constant speed of 25 km/h.	
	How many minutes did this take?	[2]
		···········
•••••		······································
		······································

Examiner only

7. (a)

Use the diagram to solve the following simultaneous equations.


$$3y - 3x = 2$$

$$y + 2x = 3$$

Give your answers correct to 1 decimal place. [2]

Examiner only

(b) The diagram shows the curve $y = x^2 + 2x - 8$.

(i) Write down the *y*-intercept of the curve. [1]

(ii) Find the coordinates of the turning point of the curve. [2]

(.....)

(iii) Use the diagram to solve $x^2 + 2x - 8 = 0$. [1]

x = or x =

	10	
8.	The surface area of the Earth is $5\cdot 101 \times 10^8$ km ² . The Earth's oceans are $70\cdot 9\%$ of this surface area. Estimate the surface area of the Earth's oceans. Give your answer in standard form.	[3]
9.	Pink Pink	
	Red Blue Blue Blue Blue Blue Blue Blue Blue	
	Eve spins it twice.	
	What is the probability that the spinner lands on red both times?	[2]
		····•
		···· •
		·····•

© WJEC CBAC Ltd.

(C300UA0-1)

Examiner only

C300UA01

(a)	• 20	hletics clu 0 of the fe 0 of the m	emale ath	nletes ha	ve a mea e a mean	n height height of	of 170 cm 180 cm.	1		
	What is	the mear	n height (of these	50 athlete	es?				[4]
••••••										
, 										
•••••										
(b)	A boat	crew has	8 rowers	and a co	ox who st	eers.				
							71000			
						S.				
			The state of the s							
	The hei	ghts, in ci	m, of the	9 people	e in the c	rew are a	as follows			
	The hei	ghts, in ci	m, of the	9 people 201	e in the ci	rew are a	as follows 201	188	193	
	150 The me		193 se height	201 s is 190	203 cm.	198	201	188		[1]

Turn over. © WJEC CBAC Ltd. (C300UA0-1)

11.	The table shows	some information	about the cost	per person	to take a boa	t across a river.
	THE LADIC SHOWS	Some information	about the cost	per person	i to take a boa	t across a river.

Adults (£)	а
Children (£)	С

The Jones family of 4 adults and 1 child pay £9.50 to take the boat. The Patel family of 5 adults and 2 children pay £13 to take the boat.

The Lee family has 3 adults and 2 children.

How much does the Lee family pay to take the boat? You must use an algebraic method and show all your working. [5]	5]
	.
	···•
	···•
	···•
	···•
	···•
The Lee family pays	

Circle the equation of a line parallel to the line y = 4x + 5. **12**. (a)

[1]

$$y = -\frac{1}{4}x + 5$$
 $y = 4x - 5$ $y = -4x + 5$ $y = \frac{1}{4}x - 5$ $4y = x + 5$

$$y = 4x - 5$$

$$y = -4x + 5$$

$$y = \frac{1}{4}x - 5$$

$$4y = x + 5$$

The gradient of the line which passes through the points (a, 3) and (2a, 9) is $\frac{3}{4}$. (b)

Find the value of *a*.

[3]

13. Find the next term of the following Fibonacci-type sequence. [1]

0

Here are the first 4 terms of a sequence.

 $\sqrt{3}$

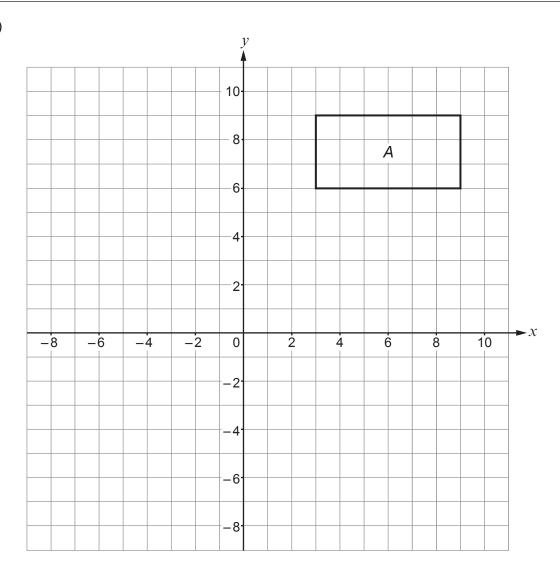
Find the 6th term of this sequence.

Simplify your answer.

[2]

Find the nth term of the following sequence.

[2]

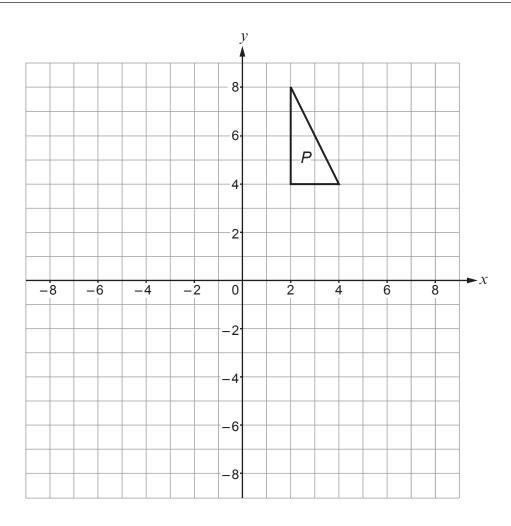

12

21

5

14. (a)

Examiner only



Draw the enlargement of rectangle A with scale factor $\frac{1}{3}$	and centre (0, 0).	[2]
		.

Examiner only

1	h	1
(U	7

Triangle P is reflected in the line y = x. The image is triangle Q.

Triangle Q is reflected in the line y = -x. The image is triangle R.

Describe a single transformation that maps triangle <i>P</i> to triangle <i>R</i> .		

© WJEC CBAC Ltd. (C300UA0-1) Turn over.

C300UA01

15. A small tank is a cuboid. It has a square base of side 20 cm. The tank contains some liquid but is not full.

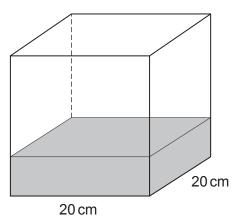


Diagram not drawn to scale

- More of the same type of liquid is added to the tank:

 The total mass of the liquid in the tank is now 5400 grams.
 - The depth of the liquid has increased by 50%. The density of the liquid is $0.9 \,\mathrm{g/cm^3}$.

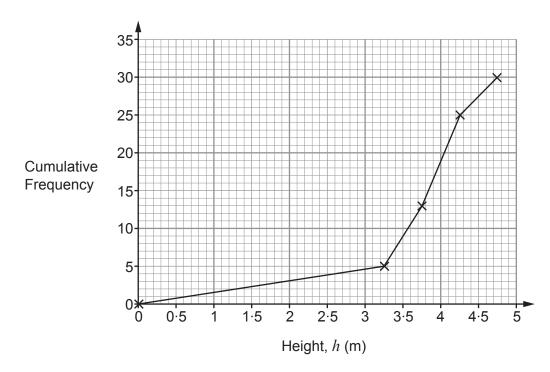
Calculate the original depth of the liquid. You must show all your working.	[5]
	······································
	······································

© WJEC CBAC Ltd.

(C300UA0-1)

[1]	Examiner only
•••••••	
······································	
[2]	
······································	
······································	
· · · · · · · ·	
[2]	
······································	
······································	
•••••••	
••••••••	

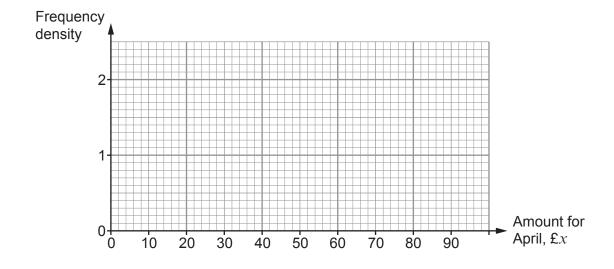
(a)	Write $13^{-2} \times 13^{7}$ as a single power of 13.	[1]
(b)	Calculate the value of $\left(8^{-1}\right)^{\frac{1}{3}}$.	[2]
(c)	$3^{\frac{5}{a}} = b\sqrt{3}$ where a and b are integers. Find the value of a and the value of b .	[2]


PLEASE DO NOT WRITE ON THIS PAGE

17. (a) Gracie has collected data about the heights of 30 giant sunflowers. The table shows her results.

Height, h (m)	3 < <i>h</i> ≤ 3·5	3·5 < <i>h</i> ≤ 4	4 < <i>h</i> ≤ 4·5	4·5 < <i>h</i> ≤ 5
Frequency	5	8	12	5

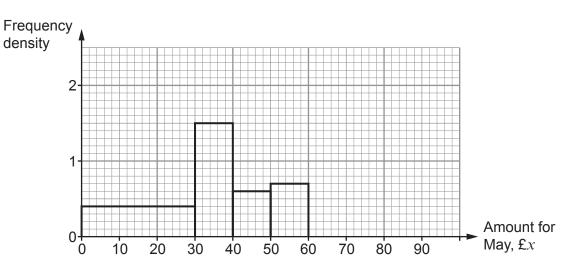
Gracie attempts to draw a cumulative frequency diagram.


Make two different criticisms of Gracie's diagram.			
1			
2.			

(b) Gracie also collects data about the amount of money each of a group of 40 gardeners spent on their gardens during the months of April and May. The table shows the data for April.

Amount for April, $(\pounds x)$	0 < <i>x</i> ≤ 30	30 < <i>x</i> ≤ 40	40 < <i>x</i> ≤ 50	50 < <i>x</i> ≤ 60	60 < <i>x</i> ≤ 80
Frequency	6	9	12	5	8

(i) Draw a histogram to represent the data for April.


[4]

•••••	 	 •••••

Calculate an estimate of how many more of the 40 gardeners spent £45 or less in May than spent £45 or less in April?
You must show all your working. [3]

•••••	 	

Examiner only

18. (a)

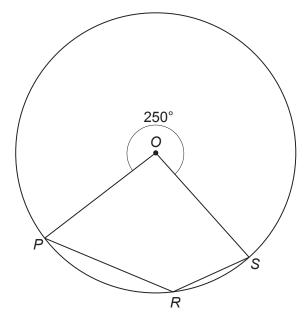


Diagram not drawn to scale

The diagram shows a circle, centre O. Points *P*, *R* and *S* are on the circumference of the circle.

Reflex angle $POS = 250^{\circ}$. $\overrightarrow{OPR} : \overrightarrow{OSR} = 2 : 3$.

Calculate the size of OPR. You must show all your working.	[3]
	•••••
	••••

Examiner only (b) Diagram not drawn to scale ABE is an isosceles triangle.
AB is parallel to DC so that ABCD is an isosceles trapezium. Prove that *ABCD* is always a cyclic quadrilateral. State any reasons that you use in your proof. [3]

19.	You are given that y is inversely proportional to x^2 . When $x = 4$, $y = 3$.				
	(a)				
	(b)	(i)	Use your formula to find the value of y when $x = 8$.	[1]	
		•••••			
		(ii)	Use your formula to find the positive value of x when $y = 1200$.	[2]	
		•·····			

20.	Write 3.21 as a fraction. Give your answer as a mixed number in its simplest form. [3]	Examin only
21.	In this question all lengths are in centimetres.	
	$\sqrt{5} + 3$ Diagram not drawn to scale	
	The length of this rectangle is $\sqrt{5} + 3$.	
	The perimeter of the rectangle is $8\sqrt{5}-2$.	
	Calculate the exact area of this rectangle. [5]	

Examiner only

22.

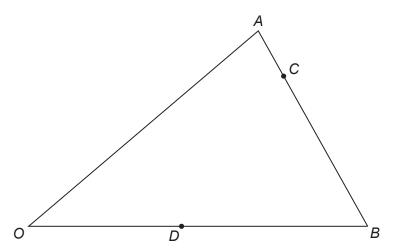


Diagram not drawn to scale

OA = **a** and **OB** = **b**. *C* is the point on *AB* such that *AC* : *AB* = 1 : 4. *D* is the mid-point of *OB*.

Find DC in terms of a and b . Give your answer in its simplest form.	[4]

27 23. Velocity, v (metres per minute) 200 150 100 50 Time, t (minutes) The diagram shows a velocity-time graph for the first 10 minutes of a cyclist's journey. The velocity is given in metres per minute and the time is given in minutes. How many minutes after the start of the journey did the cyclist first travel at a velocity of 9 kilometres per hour? [4]

Examiner only

(a) Solve the equation $5x^2 - 8x - 1 = 0$.	
Give your answers in the form $\frac{m \pm \sqrt{n}}{5}$, where m and	d n are integers. [3]
(b) Use factorisation to solve the following equation	[6]
(b) Use factorisation to solve the following equation. $\frac{4}{1} = 3 + \frac{2}{1}$	[6]
(b) Use factorisation to solve the following equation. $\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]
	[6]
$\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]
$\frac{4}{x-1} = 3 + \frac{2}{x}$	[6]
$\frac{4}{x-1} = 3 + \frac{2}{x}$	

		29		
The	following probabilities are g	iven for events A and E	3.	E
	$P(A) = 0 \cdot 3,$	$P(A \cup B) = 0.7,$	$P(A \cap B) = 0 \cdot 1$	
(a)	By drawing a Venn diagra	am, or otherwise, find th	ne value of $P(B)$.	[3]
•••••				
•••••				
(b)	Find $P(A' \cup B')$.			[2]
•••••				

END OF PAPER

© WJEC CBAC Ltd.

stion ber	Additional page, if required. Write the question number(s) in the left-hand margin.	E

PLEASE DO NOT WRITE ON THIS PAGE

