wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2023

A LEVEL FURTHER MATHEMATICS UNIT 6 FURTHER MECHANICS B 1305U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 6 FURTHER MECHANICS B

SUMMER 2023 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	B C (30) F Z3g		
	Resolve vertically	M1	Dim. correct equation with 3 terms
	$S\cos 30^\circ + R = 23g$ $\frac{\sqrt{3}}{2}S + R = 23g$	A1	$23g = 225 \cdot 4 = \frac{1127}{5}$
	Resolve horizontally	M1	Dim. correct equation
	$F = S\sin 30^{\circ} \qquad \qquad F = \frac{1}{2}S$	A1	
	$F = \frac{2}{3}R$ $\frac{2}{3}R = S \sin 30^{\circ}$ $R = \frac{3}{4}S$ $\frac{2}{3}R = \frac{1}{2}S$	B1	Used
	$\frac{\sqrt{3}}{2}S + \frac{3}{4}S = 23g$	m1	Elimination of one variable Both M's needed above
	$S = 139 \cdot 47(80054)$ (N) $R = 104 \cdot 60(85041)$ (N)	A1 A1	cao cao
	Note exact forms	[8]	
	$S = \frac{92g}{3} \left(2\sqrt{3} - 3 \right) = \frac{92g}{2\sqrt{3} + 3}$		
	$R = 23g(2\sqrt{3} - 3) = \frac{69g}{2\sqrt{3} + 3}$		
(b)	Moments about A	M1	Dim. correct equation, no extra
	$AC \times S = 23g \times 4\cos 30^\circ$	A1	LHS
	$AC \times 139 \cdot 478 \dots = 225 \cdot 4 \times 2\sqrt{3}$	AT	
	$AC = \frac{23g \times 4\cos 30^{\circ}}{139 \cdot 4780054} \qquad \frac{225 \cdot 4 \times 2\sqrt{3}}{139 \cdot 4780054}$		FT S from (a)
	$AC = 5 \cdot 598076211$ (m) or $= \frac{6+3\sqrt{3}}{2}$ (m)	A1	сао
		[4]	

(c)	 No, both reactions remain the same and (one of the following) Calculations in (a) are independent of the location of the centre of mass Moments were not used in part (a) and so distances were not considered 	E1 [1]	
	Total for Question 1	13	

Q2	Solution				Notes
	Shape	Volume/Mass	Distance of COM from base		Condone omission of ρ (mass per
	Large Cone	$\frac{1}{3}\pi(3x)^{2}(6y)\rho$ (= 18\pi x^{2}y)	$\frac{\frac{1}{4}(6y)}{\left(=\frac{3y}{2}\right)}$	B1	unit volume) Both volume and distance
	Small Cone	$\frac{\frac{1}{3}\pi(x)^2(2y)\rho}{\left(=\frac{2}{3}\pi x^2 y\right)}$	$4y + \frac{1}{4}(2y)$ $\left(=\frac{9y}{2}\right)$	B1 B1	Identification of $2y$ in either
		$(18\pi r^2 v - {}^2\pi r^2 v)$			Tor both volume and distance
	Frustum	$\left(=\frac{52}{3}\pi x^2 y\right)^{p}$	$=\frac{52}{3}\pi x^2 y$ \overline{y}	B1	сао
	Moments about base				Masses and moments consistent All terms, allow sign errors
	$\frac{52}{3}\pi x^2 y \times \bar{y} = 18\pi x^2 y \times \frac{3y}{2} - \frac{2}{3}\pi x^2 y \times \frac{9y}{2}$				FT table throughout
	$\frac{52}{3} \times \bar{y} = 18 \times \frac{3y}{2} - \frac{2}{3} \times \frac{9y}{2}$				
	$\bar{y} = \frac{18}{13}y$			A1	Convincing (cao)
				[7]	
		Tota	I for Question 2	7	

Q2	Alternative Solution			Mark	Notes
(b)	Shape	Volume/Mass	Distance of COM from vertex		Condone omission of ρ (mass per unit volume)
	Large Cone	$\frac{1}{3}\pi(3x)^2(6y)\rho$ (= 18\pi x^2y)	$\frac{\frac{3}{4}(6y)}{\left(=\frac{9y}{2}\right)}$	B1	Both volume and distance
	Small Cone	$\frac{\frac{1}{3}\pi(x)^2(2y)\rho}{\left(=\frac{2}{3}\pi x^2y\right)}$	$\frac{\frac{3}{4}(2y)}{\left(=\frac{3y}{2}\right)}$	B1 B1	Identification of $2y$ in either Both volume and distance
	Frustum	$\left(18\pi x^2 y - \frac{2}{3}\pi x^2 y\right)\rho$ $\left(=\frac{52}{3}\pi x^2 y\right)$	\overline{y}	B1	сао
	Moments about vertex $\frac{52}{3}\pi x^2 y \times \overline{y} = 18\pi x^2 y \times \frac{9y}{2} - \frac{2}{3}\pi x^2 y \times \frac{3y}{2}$ $\frac{52}{3} \times \overline{y} = 18 \times \frac{9y}{2} - \frac{2}{3} \times \frac{3y}{2}$ 60				Masses and moments consistent All terms, allow sign errors FT table throughout
	$y = \frac{1}{13}y$ ∴ Distance from base = $6y = \frac{60}{13}y = \frac{18}{13}y$				Convincing (cao)
	Shape Volume/Mass Distance of COM from top of frustum				Condone omission of ρ (mass per unit volume)
	Large Cone	$\frac{1}{3}\pi(3x)^{2}(6y)\rho$ (= 18\pi x^{2}y)	$\frac{3}{4}(6y) - 2y$ $\left(=\pm\frac{5y}{2}\right)$	B1	Sight of $2y$ in either
	Small Cone	$\frac{1}{3}\pi(x)^2(2y)\rho$ $\left(=\frac{2}{3}\pi x^2 y\right)$	$\frac{1}{4}(2y)$ $\left(=\pm\frac{y}{2}\right)$	B1 B1	Identification of $2y$ in either Both volume and distance
	Frustum	$\left(18\pi x^2 y - \frac{2}{3}\pi x^2 y\right)\rho$ $\left(=\frac{52}{3}\pi x^2 y\right)$	\overline{y}	B1	сао
	Moments about smaller circular surface $\frac{52}{3}\pi x^2 y \times \bar{y} = 18\pi x^2 y \times \pm \frac{5y}{2} - \frac{2}{3}\pi x^2 y \times \pm \frac{y}{2}$ $\frac{52}{3}\pi x^2 y \times \bar{y} = 18 \times \frac{5y}{2} - \frac{2}{3} \times \frac{y}{2}$				Masses and moments consistent All terms, allow sign errors FT table throughout
	$\overline{y} = \frac{34}{13}y$ $\therefore \text{ Distance from base} = 4y - \frac{34}{13}y = \frac{18}{13}y$				Convincing (cao)

Q3	Solution	Mark	Notes
(a)	period = 12 (hours) $T = 12$	B1	si
	amplitude = 4 (m) $a = 4$	B1	si
		[2]	
(b)	$\omega = \frac{\pi}{6} \qquad \qquad \omega = \frac{\pi}{21600}$	B1	$\omega = \frac{2\pi}{\text{period}}$ FT period from (a)
	Using $x = \pm a \cos(\omega t)$	M1	Allow $\pm a \sin(\omega t)$
	$x = -4\cos\left(\frac{\pi}{\epsilon}t\right)$	A1	oe, cao
	(0)	[3]	
(C)	$-2 = -4\cos\left(\frac{\pi}{6}t\right)$	M1	FT x from (b)
	t = 2 (hours)	A1	сао
	t = 10 (hours)	A1	сао
	Earliest time: 7 a.m. and Latest time: 3 p.m.	A1	cao, both times
		[4]	
(d)	$v = \frac{\mathrm{d}x}{\mathrm{d}t}$	M1	FT x from (b)
	$v = 4\sin\left(\frac{\pi}{6}t\right) \times \frac{\pi}{6}$	A1	
	$v = \frac{2}{3}\pi\sin\left(\frac{\pi}{6}t\right)$		
	At $t = 9$, $v = \frac{2}{3}\pi \sin(\frac{\pi}{6} \times 9)$	M1	FT v
	$v = -\frac{2}{3}\pi \qquad \qquad = -2 \cdot 0(94\dots)$		
	Rate (at which the level of water is falling)	A 4	
	$=\frac{2}{3}\pi$ (m/hour)	ат [4]	
	Total for Ouestion 3	13	
		15	

Further Notes

(b) Equivalent forms for A1

$$x = -4\cos\left(\frac{\pi}{6}t\right) = 4\sin\left(\frac{\pi}{6}t - \frac{\pi}{2}\right) = -4\sin\left(\frac{\pi}{6}t + \frac{\pi}{2}\right) = 4\cos\left(\frac{\pi}{6}t \pm \pi\right)$$
(c) Corresponding derivatives for part (d)

$$v = x' = 4\sin\left(\frac{\pi}{6}t\right) \times \frac{\pi}{6} = 4\cos\left(\frac{\pi}{6}t - \frac{\pi}{2}\right) \times \frac{\pi}{6} = -4\cos\left(\frac{\pi}{6}t + \frac{\pi}{2}\right) \times \frac{\pi}{6} = -4\sin\left(\frac{\pi}{6}t \pm \pi\right) \times \frac{\pi}{6}$$

Q3	Alternative Solution	Mark	Notes
	Using $t = 9$ (5 a.m. to 2 p.m.) to deduce that	M1	$x = -4\cos\left(\frac{\pi}{6} \times 9\right)$
	x = 0	A1	
	Using an expression for v with $x = 0$	m1	
	$v = \pm \begin{cases} \omega \sqrt{a^2 - 0^2} \\ \omega a \end{cases}$		
	$v = \pm \frac{2}{3}\pi \qquad \qquad = \pm 2 \cdot 0(94\dots)$		
	Rate (at which the level of water is falling) = $\frac{2}{3}\pi$ (m/hour)	A1	
		[4]	

Q4	Solution				Mark	Notes
(a)	Shape	Mass	Distance from AC	Distance from AB		
		$\frac{\pi(12)^2}{4} \times 2m$ $(= 72m\pi)$	$\frac{16}{\pi}$	$\frac{16}{\pi}$	B1 B1	Correct mass Both distances correct
	С 🔵	50 <i>m</i>	0	28		
	F 🔵	30 <i>m</i>	22 · 5	14	B2	Masses and distances for C, F, B
	B 🔵	20 <i>m</i>	45	0		
	Lamina	$(72\pi + 100)m$	x	\bar{y}	B1	сао
	(i) Moments about AC $((72\pi)^{(16)} + (20)(22 + 5) + (20)(45))m$				M1	Masses and moments consistent All terms, allow sign errors FT table
	($= (72\pi +$	- 100) $m \times \bar{x}$	A1	
	$(1152 + 675 + 900)m = (72\pi + 100)m \times \bar{x}$ $\bar{x} = 8 \cdot 36(0038474)$ (cm)				A1	сао
	(ii) Mome	ents about AB			M1	Masses and moments consistent
	$\left((72\pi) \left(\frac{16}{\pi}\right) + (30)(14) + (50)(28) \right) m = (72\pi + 100)m \times \bar{y}$				A1	FT table
	$(1152 + 420 + 1400)m = (72\pi + 100)m \times \bar{y}$					
	$\bar{y} = 9.11(1123705)$ (cm)			A1 [11]	сао	
(b)	Length AF	$P = \bar{y}$			B1 [1]	FT \bar{y} from (a)(ii)

Q5	Solution	Mark	Notes
(a)	$\mathbf{r}_{P} = (8\mathbf{i} - 6\mathbf{j})t$ $\mathbf{r}_{Q} = (12\mathbf{i} - 48\mathbf{j}) + (4\mathbf{i} + 10\mathbf{j})t$	B1 B1	
	If spheres collide, then $\mathbf{r}_P = \mathbf{r}_Q$ for some value of		
	t. Comparison of coefficients	M1	Both i and j coefficients compared
	i $8t = 12 + 4t$ t = 3		
	j $-6t = -48 + 10t$ t = 3		
	Value of <i>t</i> for both components are equal, therefore spheres collide	A1	
		[4]	
(b)	$8\mathbf{i} - 6\mathbf{j}$ $P(2 \text{ kg})$ $8\mathbf{i} + 15\mathbf{j}$		Before collision
	$\frac{Q}{(6 \text{ kg})}$ $4\mathbf{i} + 10\mathbf{j}$ $4\mathbf{i} + 10\mathbf{j}$		After collision
	Speed = 5	N/1	Llood
	$\sqrt{4^2 + v_Q^2} = 5$	Λ 1	At least one value
	$v_q = \pm 3$	AT M4	Attempted
	$(2)(-6) + (6)(10) = 2v_P + 6v_Q$ $48 = 2v_P + (6)(\pm 3)$	AT	All correct. FT v_q
	$v_Q = +3 \implies v_P = 15$ $v_Q = -3 \implies v_P = 33$	A1	Both values of v_P
	Restitution (along line of centres) $v_Q - v_P = -e(106)$	M1	FT v_Q and v_P
	3 - 15 = -e(106) OR $-3 - 33 = -e(106)$	A1	All correct with their v_P corresponding to either v_Q
	$e=\frac{3}{4}$ $e=\frac{3}{4}$		Both voluce of a with $a(-9) > 1$
	$e = \frac{3}{4}$	A1	clearly discarded $e(=\frac{1}{4}) > 1$
	velocity of sphere P , $\mathbf{v}_P = 8\mathbf{i} + 15\mathbf{j}$ (ms ⁻¹)	A1 [0]	сао
		[9]	

(c)	Impulse, $I = change$ in momentum	M1	Used
	$\mathbf{I} = 2\big(0 - (8\mathbf{i} + 15\mathbf{j})\big)$		
	$\mathbf{I} = -(16\mathbf{i} + 30\mathbf{j})$	A1	$FT \mathbf{v}_P$
	I = 34 (Ns)	A1	сао
		[3]	
	Total for Question 5	16	

Q5	Alternative Solutions	Mark	Notes
(a)	$\mathbf{r}_{Q} - \mathbf{r}_{P} = (12 - 4t)\mathbf{i} + (-48 + 16t)\mathbf{j}$ $\mathbf{r}_{Q} - \mathbf{r}_{P} = 0$	B1 B1	B1 for each component
	r_Q $r_P = 0$ ⇒ $12 - 4t = 0$ and $-48 + 16t = 0$	M1	
	t = 3 for both components are equal, therefore spheres collide.	A1	
		[4]	
(a)	$\mathbf{r}_{Q} - \mathbf{r}_{P} = (12 - 4t)\mathbf{i} + (-48 + 16t)\mathbf{j}$	B1 B1	B1 for each component
	Forming and solving a quadratic equation		
	$\left \mathbf{r}_{Q}-\mathbf{r}_{P}\right ^{2}=272t^{2}-1632t+2448=0$	M1	
	$t = 3$ or $b^2 - 4ac = 0$, therefore spheres collide.	A1	
		[4]	

Q6	Solution	Mark	Notes
(a)	Application of N2L $-T - 250\ 000v = 50\ 000a$	M1 A1	Dim. correct. $250\ 000\nu$ and T in same direction
	$T = 312\ 500x$	B1	$a = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$
	$-312\ 500x\ -250\ 000v\ =50\ 000\ \frac{\mathrm{d}^2x}{\mathrm{d}t^2}$		÷ 12 500
	$4\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 20\frac{\mathrm{d}x}{\mathrm{d}t} + 25x = 0$	A1 [4]	Convincing
(b)	Auxiliary equation: $4r^2 + 20r + 25 = 0$ Roots: $r = -\frac{5}{2}$ (twice)	M1 A1	
	General solution: $x = e^{-\frac{5}{2}t}(At + B)$	B1	
	Initial conditions $t = 0$, $x = 0$, $(x' = U)$	M1	Used in general solution
	$B = 0 \qquad \qquad U = -\frac{5}{2}B + A$	A1	сао
	Differentiating $v = x' = -\frac{5}{2}e^{-\frac{5}{2}t}(At + B) + e^{-\frac{5}{2}t}A$	M1 A1	$U = -\frac{5}{2}B + A$ Initial conditions give $A = U$
	$\therefore x = U e^{-\frac{5}{2}t} t$	A1	сао
		[8]	
(c)	$v = x' = U \mathrm{e}^{-\frac{5}{2}t} \left(1 - \frac{5}{2}t \right)$		
	When $v = 0 \ (\Rightarrow t = \frac{2}{5})$	M1	FT v = x'
	Using $x = Ue^{-\frac{5}{2}t}t$ at $t = \frac{2}{5}$ and $x = 0 \cdot 3$.	m1	$FT \ v = x' \ \text{and} \ t > 0$
	$0 \cdot 3 = U e^{-\frac{5}{2}\left(\frac{2}{5}\right)} \left(\frac{2}{5}\right)$		
	$U = \frac{3}{4}e = 2.0387 \dots (ms^{-1})$	A1	сао
	т	[3]	
(d)	Critical damping Repeated root in (b)	E1 [1]	oe, $b^2 - 4ac = 0$ or $k^2 - \omega^2 = 0$ when written in the
			$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} + 2k\frac{\mathrm{d}x}{\mathrm{d}t} + \omega^2 x = 0$
	Total for Question 6	16	

1305U60-1 WJEC GCE A Level Further Mathematics - Unit 6 Further Mechanics B MS S23/CB