wjec cbac

GCE AS MARKING SCHEME

SUMMER 2023

AS FURTHER MATHEMATICS UNIT 1 FURTHER PURE MATHEMATICS A 2305U10-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 1 FURTHER PURE MATHEMATICS A

SUMMER 2023 MARK SCHEME

Qu.	Solution	Mark	Notes
1.	Conjugate: $\bar{z} = 3 - \lambda i$	B1	si
	$(3 + \lambda i)^{2} + (3 - \lambda i)^{2} = 2$ 9 + 6\lambda i + i^{2}\lambda^{2} + 9 - 6\lambda i + i^{2}\lambda^{2} = 2	M1	Attempt to expand
	$9 + 6\lambda i - \lambda^{2} + 9 - 6\lambda i - \lambda^{2} = 2$ 2 $\lambda^{2} = 16$	A1	_
	$\lambda = 2\sqrt{2}$ oe (simplified)	A1	eg A0 for $\lambda = \sqrt{\frac{16}{2}}$
		Total [4]	
2. a)	det $A = -10$	B1	Si
	$A^{-1} = \frac{-1}{10} \begin{pmatrix} -7 & 1\\ -4 & 2 \end{pmatrix}$	B1	FT their det A
		(2)	
b)	METHOD 1 (Hence): $X = A^{-1}B$	M1	si FT their A^{-1}
	$X = \frac{-1}{(-7 \ 1)} \begin{pmatrix} 2 & 0 & 9 \\ 0 & -9 \end{pmatrix}$	m 1	
	$X = \frac{10(-4 \ 2)(4 \ -20 \ 13)}{10(-10 \ -20 \ -50)}$ $X = \frac{-1}{10} \begin{pmatrix} -10 \ -20 \ -50 \end{pmatrix}$	mı	Correct method multiplication
	$X = \begin{pmatrix} 1 & 2 & 5 \\ 0 & 4 & 1 \end{pmatrix}$	A1	сао
	METHOD 2:		
	$\begin{pmatrix} 2 & -1 \\ 4 & -7 \end{pmatrix} \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} = \begin{pmatrix} 2 & 0 & 9 \\ 4 & -20 & 13 \end{pmatrix}$	(M1)	Setting up and beginning to multiply matrices
	Leading to $2a + d = 2$ $2b + a = 0$ $2a + f = 0$		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	Solving at least 1 set of simultaneous equations,	(m1)	
	$X = \begin{pmatrix} 1 & 2 & 5 \\ 0 & 4 & 1 \end{pmatrix}$	(A1)	cao
		(3)	
		Total	
		[5]	
1			

Qu.	Solution	Mark	Notes
3. a)	Another root is 5 + i	B1	Accept 4 or –4
		<i>(</i>)	
		(1)	
b)	METHOD 1:		
	(x-5+i)(x-5-i)	M1	Sum = 10, product = 26
	$x^2 - 10x + 26$ is the quadratic factor	A1	
	$r^4 - 10r^3 + 10r^2 + 160r - 416 - 0$		
	$(x^2 - 10x + 10x + 100x - 410 = 0)$ $(x^2 - 10x + 26)(x^2 + ax - 16) = 0$	m1	
	$(x^2 - 10x + 26)(x^2 - 16) = 0$	A1	
	2		
	$\therefore x^2 - 16 = 0$	۸1	
	Solving, r = +4		
	METHOD 2:		
	Let other two roots be α and β	(M1)	
	$\therefore 5 + 1 + 5 - 1 + \alpha + \beta = 10$ $\alpha + \beta = 0$	(Δ1)	1 correct equation
	u + p = 0	(/(1)	
	$(5-i)(5+i)\alpha\beta = -416$		
	$26\alpha\beta = -416$	() ()	
	$\alpha\beta = -16$	(A1)	2nd correct equation
	Solving simultaneous equations.	(m1)	Or $x^2 - 16 = 0$, convincing method
	$x = \pm 4$	(A1)	
			If F instancial sucred
			11.5 - t not considered, award SC1 for a use of Eactor Theorem
			SC2 for 1 correct root after FT
			SC3 for 2 correct roots after FT
		(5)	
		Total	
		[6]	

Qu.	Solution	Mark	Notes
4. a)	Translation matrix: $\begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$	B1	
	Reflection matrix: $\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	B1	
	$T = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$	M1	FT their translation and reflection matrix
	$T = \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 2 \end{pmatrix}$	A1	сао
			M0A0 For multiplying the wrong way, which gives $\begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$
		(4)	$T = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}$
b)	Invariant points given by $ \begin{pmatrix} 0 & 1 & -2 \\ 1 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} $	M1	FT their <i>T</i> from (a)
	Giving, $y - 2 = x$ and $x + 2 = y$.	A1	
	As these are equivalent, there is an infinite number of invariant points.	A1	
		(3)	
		Total [7]	
5.a)	AB = (-2i + 7k) - (3i + 4j - 2k) = -5i - 4j + 9k	B1	si
	Therefore, $\mathbf{r} = 3\mathbf{i} + 4\mathbf{j} - 2\mathbf{k} + \lambda(-5\mathbf{i} - 4\mathbf{j} + 9\mathbf{k})$ $\mathbf{r} = (3 - 5\lambda)\mathbf{i} + (4 - 4\lambda)\mathbf{j} + (-2 + 9\lambda)\mathbf{k}$	M1 A1	Accept equivalent convincing
		(3)	
b)	Substituting into plane equation: $2(3 - 5\lambda) + 3(4 - 4\lambda) + 3(-2 + 9\lambda) = 27$ $5\lambda = 15$	M1	
	$\lambda = 3$	A1	
	Therefore, point of intersection: $(-12, -8, 25)$	A1	FT their λ
		(3)	
		Total [6]	

Qu.	Solution	Mark	Notes
6.	Putting $z = x + iy$ x + iy - 3 + i = 2 x + iy - 5 - 2i (x - 3) + i(y + 1) = 2 (x - 5) + i(y - 2)	M1	
	$\frac{1}{\sqrt{(x-3)^2 + (y+1)^2}} = 2\sqrt{(x-5)^2 + (y-2)^2}$ $(x-3)^2 + (y+1)^2 = 4[(x-5)^2 + (y-2)^2]$	m1 A1	
	$x^{2} - 6x + 9 + y^{2} + 2y + 1$ = 4x ² - 40x + 100 + 4y ² - 16y + 16	A1	oe
	$3x^2 + 3y^2 - 34x - 18y + 106 = 0$, which is the standard form of a circle.	A1	or equivalent form of a circle $\left(x - \frac{17}{3}\right)^2 + (y - 3)^2 = \frac{52}{9}$
	Centre = $\left(\frac{17}{3}, 3\right)$	A1	FT provided coefficients of x^2 and y^2 are equal
		Total [6]	
7.	When $n = 1$, LHS = $\begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}$ and RHS = $\begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}$ Therefore, proposition is valid for $n = 1$.	B1	
	Assume result is true for $n = k$	M1	
	1.e. $\begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}^k = \begin{bmatrix} 2^k & 2^{k-1} \times 5k \\ 0 & 2^k \end{bmatrix}$		
	Consider $n = k + 1$ $\begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}^{k+1} = \begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2^k & 2^{k-1} \times 5k \\ 0 & 2^k \end{bmatrix}$	M1 A1	$\operatorname{Or} \begin{bmatrix} 2^{k} & 2^{k-1} \times 5k \\ 0 & 2^{k} \end{bmatrix} \begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}$
	$\begin{bmatrix} 2 \times 2^k & (2 \times 2^{k-1} \times 5k) + (5 \times 2^k) \\ 0 & 2 \times 2^k \end{bmatrix}$		
	Top right entry: $(2^k \times 5k) + (5 \times 2^k)$ $= 2^k(5k + 5)$		
	$=2^k \times 5(k+1)$	A1	
	Therefore, $ \begin{bmatrix} 2 & 5 \\ 0 & 2 \end{bmatrix}^{k+1} = \begin{bmatrix} 2^{k+1} & 2^k \times 5(k+1) \\ 0 & 2^{k+1} \end{bmatrix} $	A1	Remaining 3 entries correct
	If proposition is true for $n = k$, it is also true for $n = k + 1$. As it is true for $n = 1$, by mathematical induction, it is true for all positive integers n	E1	Award for a parfact colution
			including the last line.
		Total [7]	

Qu.	Solution	Mark	Notes
8.	$ \begin{aligned} \alpha + \beta + \gamma &= -5 \\ \alpha \beta + \beta \gamma + \gamma \alpha &= 2 \\ \alpha \beta \gamma &= -8 \end{aligned} $	B1	any two correct equations
	New equation: Sum of roots: $\frac{\alpha}{\beta\gamma} + \frac{\beta}{\gamma\alpha} + \frac{\gamma}{\alpha\beta}$ $= \frac{\alpha^2 + \beta^2 + \gamma^2}{\alpha\beta\gamma}$ $= \frac{(\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)}{\alpha\beta\gamma}$ $= \frac{(-5)^2 - (2 \times 2)}{-8} = -\frac{21}{8}$	M1 A1	Common denominator
	Sum of pairs: $\frac{1}{\gamma^{2}} + \frac{1}{\beta^{2}} + \frac{1}{\alpha^{2}} = \frac{\alpha^{2}\beta^{2} + \beta^{2}\gamma^{2} + \alpha^{2}\gamma^{2}}{\alpha^{2}\beta^{2}\gamma^{2}}$ $= \frac{(\alpha\beta + \beta\gamma + \gamma\alpha)^{2} - 2\alpha\beta\gamma(\alpha + \beta + \gamma)}{(\alpha\beta\gamma)^{2}}$ $= \frac{2^{2} - (2 \times -8 \times -5)}{(-8)^{2}} = \frac{-76}{64} \left(=\frac{-19}{16}\right)$	M1 A1 A1	Common denominator Fully factorised
	Product: $\frac{1}{\alpha\beta\gamma} = -\frac{1}{8}$	B1	
	$\therefore \frac{-b}{a} = -\frac{21}{8}$ $\frac{c}{a} = \frac{-76}{64}$ $\frac{-d}{a} = -\frac{1}{8}$	B1	FT previous values, two correct expression
	If $a = 1, b = \frac{21}{8}, c = \frac{-76}{64}, d = \frac{1}{8}$ New equation: $x^{3} + \frac{21}{8}x^{2} - \frac{76}{64}x + \frac{1}{8} = 0$	B1	oe FT B1 above eg. If $a = 16, b = 42, c = -19, d = 2$ New equation: $16x^3 + 42x^2 - 19x + 2 = 0$
		Total [9]	

Qu.	Solution	Mark	Notes
9. a)	$u + iv = 1 - (x + iy)^2$	M1	
	$u + iv = 1 - x^2 + y^2 - 2ixy$	A1	
	Imaginary parts: $v = -2rv$	1111	
	Real parts: $u = 1 - x^2 + y^2$	A1	Both correct
		(4)	
b)	Substituting $y = 4x$	M1	FT (a)
	$v = -2x \times 4x = -8x^{2}$ $u = 1 - x^{2} + 16x^{2} (= 1 + 15x^{2})$	A1	A1 for both u and v
	Eliminating x , the equation of the locus Q is	M1	
	$u = 1 + 15\left(rac{v}{-8} ight)$ oe	A1	cao $(8u + 15v = 8)$
		(4)	
c)	Point $P(2,5) \to Q(22,-20)$	B1	FT (a)
	Equation of the locus of Q is $8u + 15v = 8$		
	$D = \frac{ (8 \times 22) + (15 \times -20) - 8 }{\sqrt{64 + 225}}$	M1 A1	oe FT their <i>Q</i> (not <i>P</i>) & straight line from (b)
	$D = \frac{132}{17}$ or 7.7647	A1	сао
		(4)	
		Total [12]	
10.	METHOD 1: Realisation of difference of two series of cubes	B1	
	$\sum_{r=1}^{k} (2r-1)^3 - \sum_{r=1}^{k-1} (2r)^3$	M1 A1	Use of \sum Condone ranges for r other than r = k and $r = k - 1$ for ranges with
	$=\sum_{k=1}^{k}(8r^{3}-12r^{2}+6r-1)-\sum_{k=1}^{k-1}8r^{3}$	A1	a difference of 1 Cubing (ignore ranges)
	$=\frac{8}{4}k^{2}(k+1)^{2} - \frac{12}{6}k(k+1)(2k+1) + \frac{6}{2}k(k+1) - k$ $-\frac{8}{4}(k-1)^{2}k^{2}$	m1 A1	Use of sums formulae All correct
	$= k[2k^{3} + 4k^{2} + 2k - 4k^{2} - 6k - 2 + 3k + 3 - 1 - 2k^{3} + 4k^{2} - 2k]$	A1	Simplification
	$=k^2(4k-3)$	A1	Accept $k(4k^2 - 3k)$ or $4k^3 - 3k^2$

Qu.	Solution	Mark	Notes
10.	METHOD 2:		
	$1^3 - 2^3 + 3^3 - 4^3 + 5^3 - 6^3 + 7^3 - \cdots$		
	$\begin{array}{c} 1^3+2^3+3^3+4^3+5^3+6^3+7^3+\cdots\\ -2(2^3+4^3+6^3+\cdots)\end{array}$	(B1)	Realisation of difference of sequences
	$1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} + 6^{3} + 7^{3} + \dots (2k - 1 \text{ terms})$ -16(1 ³ + 2 ³ + 3 ³ + \dots) (k - 1 \terms)	(B1)	Factorising 2 ³
	$\sum_{r=1}^{2k-1} r^3 - 16 \sum_{r=1}^{k-1} r^3$	(M1) (A1)	Use of \sum Condone ranges for r other than r = 2k - 1 and $r = k - 1$ for ranges with a difference of k
	$=\frac{(2k-1)^2(2k)^2}{4} - \frac{16(k-1)^2k^2}{4}$	(m1) (A1)	Use of sums formulae All correct
	$= k^{2}[(2k-1)^{2} - 4(k-1)^{2}]$	(A1)	Simplification
	$= k^2(4k^2 - 4k + 1 - 4k^2 + 8k - 4)$		
	$=k^2(4k-3)$	(A1)	Accept $k(4k^2 - 3k)$ or $4k^3 - 3k^2$
	METHOD 3: Realisation of difference of two series of cubes	(B1)	
	$\sum_{r=1}^{k} (2r-1)^3 - \sum_{r=1}^{k-1} (2r)^3$	(M1) (A1)	Use of \sum Condone ranges for r other than $r = k$ and $r = k - 1$ for ranges with
	$=\sum_{r=1}^{k}(8r^{3}-12r^{2}+6r-1)-\sum_{r=1}^{k-1}8r^{3}$	(A1)	a difference of 1 Cubing (ignore ranges)
	$=\sum_{r=k}^{k} 8r^{3} + \sum_{r=1}^{k} (-12r^{2} + 6r - 1)$		
	$= 8k^3 - \frac{12}{6}k(k+1)(2k+1) + \frac{6}{2}k(k+1) - k$	(m1) (A1)	Use of sums formulae All correct
	$= k[8k^2 - 4k^2 - 6k - 2 + 3k + 3 - 1]$	(A1)	Simplification
	$=k^2(4k-3)$	(A1)	Accept $k(4k^2 - 3k)$ or $4k^3 - 3k^2$
		Total [8]	

2305U10-1 WJEC GCE AS Further Mathematics - Unit 1 Further Pure Mathematics A MS S23/CB