

Centre Number Candidate Number

Pearson Edexcel International GCSE

Time 1 hour 30 minutes

Mathematics B PAPER 1

You must have: Ruler graduated in centimetres and millimetres, Total Marks protractor, pair of compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided - there may be more space than you need.
- Calculators may be used.

Information

- The total mark for this paper is 100.
- The marks for each question are shown in brackets - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Check your answers if you have time at the end.
- Without sufficient working, correct answers may be awarded no marks.

Pearson

Answer all TWENTY SEVEN questions.

Write your answers in the spaces provided.

You must write down all the stages in your working.
1 The nth term of a sequence is given by $4 n-12$
Write down the first 2 terms of the sequence.

1st term

2nd term

2 Bronze is made from copper and tin in the ratio of $22: 3$ by weight.
Calculate the weight of copper, in kg , needed to make 12.5 kg of bronze.

3 A pattern on a white grid is made from 6 shaded squares.

Shade exactly 2 more squares so that the 8 shaded squares will make a pattern with rotational symmetry of order 4

4 Make u the subject of

$$
s=u t+\frac{1}{2} a t^{2}
$$

5 Without using a calculator and showing all your working, evaluate

$$
3 \frac{1}{8} \times 2 \frac{4}{5}
$$

Give your answer as a mixed number in its simplest form.

6 Factorise completely

$$
2 m c^{2}+6 p^{2} c^{4}
$$

7 Inzamam cycles 6.4 km from his home to school.
He leaves home at 0740 and arrives at school at 0820
Calculate his average speed, in km / h, for the journey.
km/h

8 Rohan asked each of the students in his school what colour paper they would prefer him to use for their worksheets.
There are 150 students in Rohan's school.
Using his results, Rohan drew the following accurate pie chart.

Find how many of the 150 students preferred blue paper.

9 Solve

$$
2(x+7)=5 x-6
$$

$$
x=
$$

\qquad

Above is a Venn diagram showing the sets $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathscr{E}
\mathbb{N} is the set of natural numbers,
\mathbb{Z} is the set of integers,
\mathbb{Q} is the set of rational numbers
\mathscr{E} is the universal set.
Place each of the following four numbers in the correct place in the above diagram.

$$
\begin{array}{llll}
-\frac{4}{11} & \sqrt{169} & \sqrt{17} & \frac{22}{7}
\end{array}
$$

11 The diagram shows a biased spinner with four colours blue, red, green and yellow.
When the spinner is spun once

- the probability it lands on blue is twice the probability it lands on red
- the probability it lands on yellow is three times the probability it lands on blue
- the probability it lands on green is 0.25

Find the probability the spinner lands on yellow.

Diagram NOT accurately drawn

12 Here is a list of four numbers.
1.1×10^{15}
2.1×10^{13}
3.2×10^{14}
3.7×10^{16}

Find the median of these four numbers.
Give your answer in standard form.

13 Given that $x \neq-4$
simplify $\quad \frac{x^{2}+4 x}{2 x+8}$

14

Diagram NOT
accurately drawn

Using the diagram above, prove that the sum of the angles of triangle $A B C$ is the same as the sum of the angles on the straight line $D C E$
Give a reason for each stage of your proof.

15 The numbers A, B, and C are given as products of their prime factors.

$$
\begin{aligned}
& A=3^{5} \times 7^{4} \times 1039 \\
& B=3^{16} \times 7^{9} \times 11^{4} \\
& C=3^{8} \times 7^{4} \times 269^{2}
\end{aligned}
$$

(a) Find the Highest Common Factor (HCF) of A, B and C

Exactly one of the three numbers is the square of an integer N
(b) Calculate the value of N
\qquad

$$
\mathbf{A}=\left(\begin{array}{rr}
3 & -2 \\
-6 & -1
\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{rr}
-1 & 1 \\
3 & 1
\end{array}\right)
$$

(a) Calculate $\mathbf{A}+2 \mathbf{B}$

(2)
(b) Calculate $\mathbf{A B}$

17

Diagram NOT accurately drawn
$O A B C$ is a sector of a circle, centre O, with $\angle A O C=100^{\circ}$
The area of the sector is $27 \mathrm{~cm}^{2}$
Calculate the perimeter, in cm to 3 significant figures, of the sector.

18 Given that $p=\frac{1+\sqrt{5}}{2}$
show that $\frac{1}{p}=p-1$
Show your working clearly.

19 There are $1000 \mathrm{~cm}^{3}$ of orange juice in a carton.
The total surface area of this carton is $700 \mathrm{~cm}^{2}$
For a special offer, a new carton is designed.
The volume of orange juice in the new carton is 33.1% more than the volume of orange juice in the original carton.
The new carton is mathematically similar to the original carton.
Calculate the total surface area of the new carton.

20 Given that $\mathbf{a}=\binom{x-2}{\sqrt{2 x}}$ where $|\mathbf{a}|=\sqrt{5}$
find the exact value of x
$x=$

21 The diagram shows triangle $A B C$

The region R consists of all the points inside the triangle that are closer to C than to B and also closer to $A B$ than to $A C$

Using ruler and compasses only and showing all your construction lines, construct and show by shading the region R Label the region R

22

The diagram above shows the line \mathbf{L}, the line with equation $y=2$ and the line with equation $y=x$ drawn on a grid.
(a) Find an equation of the line \mathbf{L}
(b) Write down the three inequalities that define the region shaded in the diagram.

23

Diagram NOT accurately drawn
$A B C D$ is a kite so that the points A, B, C and D lie on a circle with radius 7.5 cm . The diagonals, $A C$ and $B D$, of the kite intersect at point E, so that $A E=3 \mathrm{~cm}$.
The line $A E C$ is a diameter of the circle.
Find the area of the kite $A B C D$

24 In a triangle $A B C$

$$
A C=6.5 \mathrm{~cm} \quad B C=12 \mathrm{~cm} \quad \angle A B C=30^{\circ}
$$

Calculate, in cm^{2} to 3 significant figures, the smaller of the areas of the two possible triangles $A B C$

25 There are 25 sweets in a bag.
n of the sweets are orange.
The rest of the sweets are yellow.
Chana takes a sweet at random from the bag.
She eats the sweet.
Chana takes at random another sweet from the bag.
She eats the sweet.
The probability that Chana eats one orange sweet and one yellow sweet is $\frac{1}{3}$
(a) Write down the probability that both sweets taken by Chana are the same colour.
(b) Find the possible values of n

Show clear algebraic working.

$$
\mathrm{f}(x)=2 x^{3}+9 x^{2}-14 x-9
$$

(a) Using the factor theorem, show that $(2 x-1)$ is not a factor of $\mathrm{f}(x)$
(b) Express $\frac{\mathrm{f}(x)}{2 x+1}$ in the form $(x+a)^{2}+b$
where a and b are integers to be found.
(c) Hence find the exact solutions of $\mathrm{f}(x)=0$

27 A particle P is moving along a straight line. At time t seconds, the displacement, s metres, of P from a fixed point O on the line is given by

$$
s=t^{3}-18 t^{2}+81 t \quad 0 \leqslant t \leqslant 9
$$

At time T seconds, where $T<9, P$ is at the point A on the line.
At A, particle P instantaneously reverses its direction of motion and moves back towards O
(a) Find the value of T

$$
T=
$$

\qquad

As P moves from A back towards O, the greatest speed of P is $V \mathrm{~m} / \mathrm{s}$
(b) Find the value of V

$$
V=
$$

