Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Mathematics B (4MB1)
Paper 02R

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P69310A
Publications Code 4MB1_02R_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- awrt - answer which rounds to
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If the final answer is wrong always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified. Examiners should send any instance of a suspected misread to review.
If there is a choice of methods shown, then award the lowest mark, unless the subsequent working makes clear the method that has been used.
If there is no answer achieved then check the working for any marks appropriate from the mark scheme.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

Question	Working	Answer	Mark	Notes
1 (a)		41	1	B1
(b)		29	1	B1
(c)		Correct region shaded	1	B1 The region containing the 15 and 12 only
(d)		Correct Venn diagram	3	B3 all correct with no extra values B2 for three regions correct or 9 items placed correctly with one value in the wrong section or all values correctly placed with some extra value(s) seen B1 for one or two regions correct or for values correctly placed in three regions with extra value(s) (not from 1-10) seen SC B1 for either of:
(e)		4	1	B1 or ft their Venn diagram NB do not $\mathrm{ft} \mathrm{n}(B)=0$
				Total 7 marks

2	$\begin{aligned} & \frac{360}{16}[=22.5] \text { or } \\ & 180-\frac{(16-2) \times 180}{16}[=180-157.5] \end{aligned}$			M1 for calculating the exterior angle of 16 -sided regular polygon accept 22.5 seen on diagram.
	$\begin{aligned} & \cos ^{\prime} 22.5^{\prime}=\frac{\frac{1}{2} A C}{5} \text { or } \\ & A C^{2}=5^{2}+5^{2}-2(5)(5) \cos \left(180-2 \times^{\prime} 22.5^{\prime}\right) \text { or } \\ & \frac{\sin ^{\prime} 22.5^{\prime}}{5}=\frac{\sin \left(180-2 \times^{\prime} 22.5^{\prime}\right)}{A C} \end{aligned}$			M1 for obtaining an eq containing $\frac{1}{2} A C$ or $A C$ give bod if labelled as other variable eg. x ft their exterior angle, must be <90 (correct angle $\angle A B C=135^{\circ}$ NB allow if the final answer rounds to 9.2 (2sf), with no incorrect working seen.
	$\begin{aligned} & A C=2\left(5 \cos ^{\prime} 22.5^{\prime}\right) \text { or } \\ & A C=\sqrt{5^{2}+5^{2}-2(5)(5) \cos \left(180-2 \times^{\prime} 22.5^{\prime}\right)} \text { or } \\ & A C=\frac{5 \sin ^{\prime} 135^{\prime}}{\sin 22.5} \end{aligned}$			M1 dep for an expression for $A C$ NB allow if the final answer rounds to 9.2 (2sf), with no incorrect working seen.
		9.24	4	A1 accept awrt 9.23 or 9.24 accept answer shown on diagram
				Total 4 marks

4	(a)		reflection		B1 Accept reflect do not accept mirror. NB do not award any marks in this part if 2 transformations listed
			$y=-2$	2	B1 for equation of correct line
	(b)		translation		B1 Accept translate do not accept move or transformation. NB do not award any marks in this part if 2 transformations listed
			$\binom{-5}{2}$	2	B1 do not accept anything other than a vector for this mark.
	(c)		rotation		B1 Accept rotate do not accept turn Give bod if rotation and another transformation listed
			$\begin{gathered} 90^{\circ} \\ \text { [anticlockwise] } \end{gathered}$		B1 oe (e.g. 270° clockwise or -270°) Do not allow 90° clockwise, -90° or -90° anticlockwise. Give bod if rotation and another transformation listed
			[about] $(2,-1)$	3	B1 for centre $(2,-1)$ NB do not award this mark if 2 transformations listed
	(d)	Triangle with vertices at $(-4,-2),(-4,-8)$ and $(-2,-8)$	Triangle E	2	B2 for correct triangle E B1 for two correct vertices plotted or triangle enlarged about $(4,0)$ with any scale factor (allow the points $(12,2),(12,8)$ and $(10,8)$ if grid extended or points labelled) or triangle enlarged with correct scale factor about any point or if three correct coordinate stated either as coordinates, position vectors or a 3×2 matrix.
					Total 9 marks

(e)	$155 \rightarrow L B=154.5, U B=155.5$ $76 \rightarrow L B=75.5, U B=76.5$ $610 \rightarrow L B=609.5, U B=610.5$		B1 for any one correct $L B$ or $U B$ seen allow $155.49[9 \ldots]$ or $610.49[9 \ldots]$		
		$(155.5-75.5) \times 610.5$		M1 for using $\left(U B_{1}-L B\right) \times U B_{2}$ if not stated as such accept values in the intervals $155<U B_{1} \leqslant 155.5,75.5 \leqslant L B<76$ and $610<U B_{2} \leqslant 610.5$	
			48840	3	A1 allow awrt 48800 must use 155.5 or $155.49[9 \ldots], 75.5$ and 610.5 or $610.49[9 \ldots]$ only

7	(a)		3.42, 2.67, 3.05	2	B2 All values correct to 2 dp . B1 At least 2 values correct to at least 1dp. Allow awrt 3.4, 2.7 and 3.0 or 3.1
	(b)		Curve drawn	3	M1 Attempts to plot at least 7 of their points with at least 5 correct ± 1 small square. (Allow if curve goes through the points) ft their values from (a) M1 drawing a smooth curve through at least 5 of their plotted points. Do not allow if straight lines used. Allow ± 1 small square from their point. A1ft A fully correct curve ft their values from (a). All Points plotted correctly, ± 1 small square, with a smooth curve through all the points ± 1 small square.
	(c)		3.1 ± 0.1	1	B1ft their graph (answer must be consistent with their graph ± 1 small square) penalise answers given to more than 2 dp
	(d)		$\frac{2 t}{27} \text { or }-6 t^{-3}$		M1 for attempt to differentiate with one term in t correct
			$[a=] \frac{2 t}{27}-6 t^{-3}$	2	A1 oe penalise if extra terms seen (eg. $a=\frac{2 t}{27}+2-6 t^{-3}$)
	(e)	$\frac{2 t}{27}-\frac{6}{t^{3}}=0$			M1 for setting their a equal to 0
		$2 t^{4}=162 \Rightarrow t^{4}=81$			M1 dep for obtaining an equation in form $t^{a}=b$ where $a>0$
			3	3	A1 both method marks must be awarded an answer of 3 with no clear algebraic working seen gains no marks, condone ± 3
					Total 11 marks

\(\left.\left.$$
\begin{array}{|l|l|l|l|l|l|}\hline \mathbf{8} & \text { (a) } & & (0,2) & & \begin{array}{l}\text { B1 allow unambiguous equivalent } \\
\text { eg. } y=2 \text { or cross } y \text { axis at 2 }\end{array}
$$

\hline \& \& \& \& \left(\frac{2}{3}, 0\right) \& 2

B1 allow unambiguous equivalent

eg. x=\frac{2}{3} or cross x axis at \frac{2}{3} must be exact but

isw if a decimal is given after an exact answer.

Allow 0.6 oe\end{array}\right] $$
\begin{array}{l}\text { B1 (oe) }\end{array}
$$\right]\)| (b) |
| :--- |

(c)	$A B=14, A C=\frac{.5}{3} \times 6[=10]$			M1 Values 14 and 10 stated or used ft their $\overrightarrow{A C}$
	$\begin{aligned} & B C=\sqrt{14^{\prime 2}-10^{\prime 2}}[=4 \sqrt{6}] \text { or } \\ & \cos B A C=\frac{10^{\prime}}{14}[\Rightarrow B A C=44.4] \end{aligned}$			M1 for correct use of Pythagoras with their $A C$ and $A B$ or a correct method to find a trig ratio of $\angle B A C$
	$\begin{aligned} & {[\text { Area }=] \frac{1}{2}\left(' 10^{\prime}\right)\left(' 4 \sqrt{6}{ }^{\prime}\right) \text { or }} \\ & \frac{1}{2}\left('^{\prime} 10^{\prime}\right)\left(\text { ' }^{\prime} 4^{\prime}\right) \sin \left('^{\prime} 44.4^{\prime}\right) \end{aligned}$			M1 for correct formula for the area of $A B C$ allow even if the method will not give an exact answer (allow for awrt 49.0 with no incorrect working seen) allow alternative methods not covered by the specification such as $S=\frac{{ }^{\prime} 10^{\prime}+' 14 \mathbf{'}^{\prime}+' 4 \sqrt{6} \text { ' }}{2}$ and $\text { Area }=\sqrt{S\left(S-{ }^{\prime} 10^{\prime}\right)\left(S-'^{\prime} 14^{\prime}\right)\left(S-'^{\prime} 4 \sqrt{6}{ }^{\prime}\right)}$
		$20 \sqrt{6}$	4	A1 oe (provided exact) eg $\sqrt{2400}$ isw if an exact answer in form $a \sqrt{b}$ or \sqrt{a} is given followed by a decimal answer.
				Total 13 marks

10	(a)	$\begin{aligned} & {[\operatorname{det} \mathbf{A}=] 2 k^{2}(k+1)-(-3 k)(k-9)} \\ & {[\operatorname{det} \mathbf{B}=] k-3(-5)[=k+15]} \end{aligned}$			M1 for at least one correct (may be unsimplified) determinant of \mathbf{A} or \mathbf{B}
		$' 2 k^{3}+5 k^{2}-27 k^{\prime}=1 k+15 '$			M1 dep for equating their (may be unsimplified) determinants (both correct).
			$\begin{array}{r} 2 k^{3}+5 k^{2}-28 k-15 \\ =0 \end{array}$	3	A1 cao no incorrect working seen and both M marks awarded. NB we must see the full equation including $=0$
	(b)	$2(-5)^{3}+5(-5)^{2}-28(-5)-15$			M1 Attempt to find $\mathrm{f}(\pm 5)$ (M0 if long division used)
		$2(-5)^{3}+5(-5)^{2}-28(-5)-15=0$	$\therefore(x+5)$ is a factor	2	A1 Find $f(-5)$ must see working (at least as shown here) and have " $=0$ "

(c)	$\begin{aligned} & {[(k+5)]\left(2 k^{2}-5 k-3\right) \text { or }} \\ & \quad-5 \left\lvert\, \begin{array}{rrrr} & 2 & -28 & -15 \\ & & -10 & 25 \\ \hline & 2 & -5 & -3 \end{array}\right. \\ & \hline \end{aligned}$			M1 (Gain any two terms of the quadratic factor.) May be seen as part of long division or synthetic long division (in which case look for two correct non zero terms on the bottom row) May be awarded from part (b).
	$[(k+5)]\left(2 k^{2}-5 k-3\right)$			A1 fully correct quadratic factor, may be awarded from part (b).
	$\left(2 k^{2}-5 k-3\right)=(2 k+1)(k-3)$			M1 dep on previous M mark for their $\left(2 k^{2}-5 k-3\right)$ factorised, their factorised form must expand to give 2 terms of their quadratic
		$(k+5)(2 k+1)(k-3)$	4	A1 Fully correct solution with no incorrect working seen gains full marks. isw if cubic is solved but must see 3 factors to gain this mark. Allow $2(k+5)\left(k+\frac{1}{2}\right)(k-3)$ Do not allow $(k+5)\left(k+\frac{1}{2}\right)(k-3)$
(d)	$\begin{aligned} & \mathbf{A}=\left(\begin{array}{ll} 2 \times \prime 3^{\prime 2} & \prime 3 '-9 \\ -3 \times ' 3 ' & \prime 3 '+1 \end{array}\right)\left[=\left(\begin{array}{cc} 18 & -6 \\ -9 & 4 \end{array}\right)\right] \\ & \mathbf{B}=\left(\begin{array}{ll} 1 & -5 \\ 3 & ' 3 ' \end{array}\right) \end{aligned}$			M1 for substituting their positive k to obtain \mathbf{A} and B
	$\mathbf{C}=\mathbf{B} \mathbf{A}=\left(\begin{array}{cc}1 & -5 \\ 3 & 3\end{array}\right)\left(\begin{array}{cc}18 & -6 \\ -9 & 4\end{array}\right)$,			M1 for correct order of operations for \mathbf{C} (allow if in terms of $k,\left(\begin{array}{cc}2 k^{2}+15 k & -4 k-14 \\ 3 k^{2} & k^{2}+4 k-27\end{array}\right)$)
		$\left(\begin{array}{cc}63 & -26 \\ 27 & -6\end{array}\right)$	3	A1
				Total 12 marks

11	$[P=] 2(2 x+3)+2(4 x-8)[=12 x-10]$			B1 Expression for P may be unsimpified
	$\tan \theta=\frac{h}{\frac{1}{2}(4 x+2)}\left(\Rightarrow h=\frac{1}{2}(2 x+1)\right)$			M1 for equation/expression for the height of the triangle or method to find $E G$ or $F G$ e.g. $\theta=\tan ^{-1} 0,5[=$ awrt 26.6] and $E G F=180-2 \times 26.6[=$ awrt 127] and $\frac{E G}{\sin ^{\prime} 26.6^{\prime}}=\frac{(4 x+2)}{\sin ^{\prime} 127^{\prime}}[E G=\text { awrt } 0.56(4 x+2)]$
	$\begin{aligned} & T=\frac{1}{2}\left(\cdot \frac{1}{2}(2 x+1)^{\prime}\right)(4 x+2) \text { or } \\ & T=\frac{1}{2}(4 x+2) \times ' 0.56(4 x+2)^{\prime} \sin ^{\prime} 26.6^{\prime} \end{aligned}$			M1 fully correct method to find area of triangle $E F G$ following from their height, $E G$ or $F G$. If these are not correct they must be unambiguously labelled (may be seen on diagram)
	$12 x-10 \geqslant \frac{1}{4}(2 x+1)(4 x+2)$			M1 mark found for setting their $P \geqslant T$ where P must be linear in x and T must be quadratic in x condone $=,>,<$ or \leqslant rather than \geqslant
	$4 x^{2}-20 x+21 \leqslant 0$			M1 dep for rearranging to a 3-term quadratic in x condone $=,>,<$ or \leqslant rather than \geqslant
	$\begin{aligned} & (2 x-3)(2 x-7) \leqslant 0 \\ & \Rightarrow \text { c.v. } \frac{3}{2}, \frac{7}{2} \end{aligned}$			M1 Correct method for solving their 3 term quadratic (need not be inequality). For factorising 2 terms correct when multiplied out. If the formula or completing the square used, allow one sign or numerical error. Must see working to award this unless their c.v, are 1.5 and 3.5.
	$\cdot \frac{3}{2} \leqslant x \leqslant \frac{7}{2}$			M1 dep on having a quadratic for $a \leqslant x \leqslant b$ with their critical values a, b where $b>a$ (choosing the inside region) Allow < sign rather than \leqslant or other indication of the values inbetween eg ' 1.5 ' to ' 3.5 '
	But $B C>0$ therefore $4 x-8>0$	$2<x \leqslant \frac{7}{2}$	8	A1 (oe) For the final answer given correctly award all marks. Must have correct inequalities.
				Total 8 marks

