Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2016
Publications Code 6681_01_1606_MS
All the material in this publication is copyright
© Pearson Education Ltd 2016
General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
General Instructions for Marking

1. The total number of marks for the paper is 75.

2. The Edexcel Mathematics mark schemes use the following types of marks:

 ‘M’ marks
 These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation.
 e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.
 The following criteria are usually applied to the equation.

 To earn the M mark, the equation
 (i) should have the correct number of terms
 (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
 e.g. in a moments equation, every term must be a ‘force x distance’ term or ‘mass x distance’, if we allow them to cancel ‘g’ s.
 For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

 M marks are sometimes dependent (DM) on previous M marks having been earned.
 e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

 ‘A’ marks
 These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

 ‘B’ marks
 These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

 A few of the A and B marks may be f.t. – follow through – marks.
3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- **bod** – benefit of doubt
- **ft** – follow through
- the symbol \(\sqrt{ } \) will be used for correct ft
- **cao** – correct answer only
- **cso** - correct solution only. There must be no errors in this part of the question to obtain this mark
- **isw** – ignore subsequent working
- **awrt** – answers which round to
- **SC**: special case
- **oe** – or equivalent (and appropriate)
- **dep** – dependent
- **indep** – independent
- **dp** decimal places
- **sf** significant figures
- *** The answer is printed on the paper**
- **\[\] The second mark is dependent on gaining the first mark**

4. All A marks are ‘correct answer only’ (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
General Principles for Mechanics Marking
(But note that specific mark schemes may sometimes override these general principles)

- Rules for M marks: correct no. of terms; dimensionally correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
- Omission or extra g in a resolution is an accuracy error not method error.
- Omission of mass from a resolution is a method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
- Use of g = 9.81 should be penalised once per (complete) question.
 N.B. Over-accuracy or under-accuracy of correct answers should only be penalised once per complete question. However, premature approximation should be penalised every time it occurs.
- Marks must be entered in the same order as they appear on the mark scheme.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads – if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft
- Mechanics Abbreviations
 M(A) Taking moments about A.
 N2L Newton’s Second Law (Equation of Motion)
 NEL Newton’s Experimental Law (Newton’s Law of Impact)
 HL Hooke’s Law
 SHM Simple harmonic motion
 PCLM Principle of conservation of linear momentum
 RHS, LHS Right hand side, left hand side.
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Let \(\text{pv of } B = ai + bj \)

\[
(0.5i + j) \cdot ((a + 1)i + (b - 5)j) = \frac{1}{2} \times 0.4 \times 5^2
\]

\[
a + 2b = 19
\]

\[
a = 1 \quad b = 2 + 3
\]

solving for \(a \) and \(b \)

\[
\text{pv of } B = (6i + 12.5j) \text{ m}
\]

OR

\[
(0.5i + j) \cdot (2i + 3j) = \frac{1}{2} \times 0.4 \times 5^2
\]

\[
+ 3 = 5
\]

\[
\frac{5}{2}
\]

\[
\text{pv of } B = (i + 5j) + \frac{5}{2}(2i + 3j)
\]

\[
= (6i + 12.5j) \text{ m}
\]

Alternative using forces and acceleration

Resolving along the wire: \((0.5i + j) \cdot \frac{1}{\sqrt{13}} (2i + 3j) = 0.4a \)

\[
\frac{5}{\sqrt{13}} = a
\]

\[
v^2 = u^2 + 2as : \quad 5^2 = 2 \times \frac{5}{\sqrt{13}} s
\]

\[
\frac{5\sqrt{13}}{2} = s
\]

\[
AB = \frac{5}{2}(2i + 3j) = (5i + 7.5j)
\]

\[
\text{pv of } B = (i + 5j) + (5i + 7.5j)
\]

\[
= (6i + 12.5j)
\]

M1 A1

Notes

First M1 for attempt at using work-energy principle, with usual rules
First A1 for a correct unprocessed equation
Second M1 for producing an equation in \(a \) and \(b \) (seen or implied)
Second A1 for a correct equation
B1 for \(a = 1 - 2 \) and \(b = 2 + 3 \) seen or implied
Third M1 for solving for \(a \) and \(b \)
Third A1 for correct answer (must be a vector)
| Alt | First M1 for resolving along the wire, with usual rules
| | First A1 for a correct acceleration seen or implied
| | Second M1 for a complete method, using *suvat* or calculus, to find the distance along the wire
| | Second A1 for a correct distance
| | B1 for $\mathbf{AB} = (-5\mathbf{i} + 7.5\mathbf{j})$ seen or implied
| | Third M1 for finding the answer
<p>| | Third A1 for correct answer (must be a vector) |</p>
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$2 + 4 = 0$</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>$r = A\cos 2t + B\sin 2t$</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>PI: $r = c\sin t + d\cos t$</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>$r = c\cos t - d\sin t$</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>$c\sin t - d\cos t + 4(c\sin t + d\cos t) = 3\sin t$</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>$e = i; d = 0$</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>GS is $r = A\cos 2t + B\sin 2t + i\sin t$</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>When $t = \frac{\pi}{2}, r = i - j$ $A = j$</td>
<td>M1 A1</td>
</tr>
<tr>
<td></td>
<td>$v = 2A\sin 2t + 2B\cos 2t + i\cos t$</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>When $t = \frac{\pi}{2}, v = 0$ $B = 0$</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>$r = i\sin t + j\cos 2t$</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>$v = i\cos t - 2j\sin 2t$</td>
<td></td>
</tr>
</tbody>
</table>

Notes

First M1 for auxiliary equation
First A1 for correct CF (condone omission of $r =$)
B1 for correct PI (they may realise $d = 0$ which is fine) (condone omission of $r =$)
Second M1 for differentiating their PI
Second A1 for correct 2^{nd} derivative
Third M1 for substituting into the DE
Fourth M1 for equating coeffs of $\sin t$ and $\cos t$ and finding c and d
Third A1 for correct GS with $r =$
Fifth M1 for using conditions to find A
Fourth A1 for $A = j$
Sixth M1 for differentiating r to give v
Fifth A1 for $B = 0$
Sixth A1 for $v = i\cos t - 2j\sin 2t$
3(a) \[R = (2j + k) + (i + k) + (i + j) = (2i + 3j)N \]

3(b) Moments about \(O \):

\[
(4j - k) \times (2j - k) + (2i + k) \times (i + k) + (3i + j + k) \times (i + j)
\]

\[= 2i + j + i + 2k \]

\[= (3i + 2k) \]

\[(i + j + k) \times (2i + 3j) + G = (3i + 2k) \]

\[(3i + 2j + 5k) + G = (3i + 2k) \]

\[G = (2j + 3k) \text{Nm} \]

3(b) Alt Moments about \((1, -1, 1) \):

\[
(i + 5j - 2k) \times (2j - k) + (i + j) \times (i + k) + (2i + 2j) \times (i + j)
\]

\[= i - j + 2k + i j k + 0 \]

\[= 2j - 3k \]

Comparing the 2 systems:

\[0 + G = (2j + 3k) \text{Nm} \]

\[G = (2j + 3k) \text{Nm} \]

Notes

3(a) M1 for adding the 3 forces together
A1 for \((2i + 3j)\)

3(b) First M1 consistent use of \(r \times F \), with correct no. of terms
First A3 for 3 correct vector products, -1 for each incorrect product \((A1A1A0)\)
Second M1 for comparing the rotational effect of the 2 systems \(about O \), to give an equation: Their \(r \times F \) = \(G + (i + j + k) \) their \(R \) with correct terms (M0 if term missing)
Second \(A2 \text{ ft} \), for the equation ft on their \(R \) and their \(r \times F \), but no products need to be evaluated.
Sixth A1 for a correct equation with all products evaluated
Seventh A1 for the answer. Units not needed.

3(b) Alt First M1 consistent use of \(r \times F \), with correct no. of terms, with \(r \) relative to \((1, -1, 1)\)
First A2 for correct terms, -1 each incorrect vector
First A3 for 3 correct vector products, -1 for each incorrect product
Second M1 for comparing the rotational effect of the 2 systems \(about (1, -1, 1) \), to give an equation: \(0 + G = \) their \(r \times F \)
Sixth \(A1 \text{ ft} \) on their \(r \times F \), for a correct equation
Seventh A1 for the answer. Units not needed.
<table>
<thead>
<tr>
<th>Question</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>(A = 2 \pi r x)</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>(m = 2 \pi r x \cdot \frac{M}{2 rh})</td>
<td>M1 A1 ()</td>
</tr>
<tr>
<td></td>
<td>((= \frac{M x}{h}))</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>(\frac{1}{2} m r^2)</td>
<td>M1 A1</td>
</tr>
<tr>
<td></td>
<td>(I = \frac{1}{2} mr^2 + mx^2)</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>(= \frac{M x}{2h} (r^2 + 2x^2))</td>
<td>DM1</td>
</tr>
<tr>
<td></td>
<td>(I = \int_0^h \frac{M}{2h} (r^2 + 2x^2) , dx)</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>(= \frac{M}{2h} \left[(r^2 x + \frac{2}{3} x^3) \right]^h_0)</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>(= \frac{M}{6} (3r^2 + 2h^2))</td>
<td>A1</td>
</tr>
</tbody>
</table>

Notes

First M1 for area of hoop (element)
Second M1 for finding the mass of their element by multiplying by the mass per unit area (or by a calculated)
First A1 for a correct mass per unit area (appropriate)
First B1 for correct MI about diameter of hoop
Third M1 for use of parallel axes
Second A1 for correct in terms of \(m \)
Third A1 for correct MI in terms of \(x \)
Fourth DM1 dependent on third M1 for integrating
Fourth A1 for a correct expression with correct limits
Fifth A1 for a correct answer in any form

N.B. The first 8 marks are available for misreads of solid cylinder or cylindrical shell with end(s).
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5(a)</td>
<td>(I_L = \frac{4}{3} ma^2 + \frac{1}{3} ma^2 + m(a^2 + (2a)^2))</td>
<td>M1 A1</td>
</tr>
<tr>
<td></td>
<td>= (\frac{20}{3} ma^2)</td>
<td>A1 (3)</td>
</tr>
<tr>
<td>5(b)</td>
<td>(m\left(\begin{array}{c} 0 \ a \end{array}\right) + m\left(\begin{array}{c} a \ 0 \end{array}\right) = 2m\left(\begin{array}{c} \bar{x} \ \bar{y} \end{array}\right) \Rightarrow \bar{x} = \bar{y} = \frac{a}{2})</td>
<td>M1 A1</td>
</tr>
<tr>
<td></td>
<td>(AG = \frac{a}{2} \sqrt{1^2 + 3^2} = \frac{a}{2} \sqrt{10})</td>
<td>M1 A1 A1</td>
</tr>
<tr>
<td></td>
<td>(M(A), \quad 2mg \frac{a}{2} \sqrt{10} \sin = \frac{20}{3} ma^2) (\cdots)</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>(\frac{3g \sqrt{10}}{20a} = \cdots), for small (\theta)</td>
<td>DM1 A1</td>
</tr>
<tr>
<td></td>
<td>(T = 2 \sqrt{\frac{2a \sqrt{10}}{3g}})</td>
<td>(8) 11</td>
</tr>
</tbody>
</table>

Notes

5(a) First M1 for a complete method to find MI with correct no. of terms
First A1 for a correct expression
Second A1 for a correct PRINTED ANSWER.
M0 for \(4/3ma^2 + 4/3ma^2 + m(2a)^2 \)

5(b) First M1 for attempt to find both coordinates of the CM
First A1 for correct position (They could find this by inspection)
Second M1 for moments about A, with correct no. of terms, and usual rules, in particular the RHS must be dimensionally correct.
Second and third A marks for a correct general equation with \(\theta \) the angle between \(AG \) and the vertical, A1 for each side.
Third M1 for use of small angle approximation and putting into SHM form. **N.B.** Not available if \(\theta \) is not the angle between \(AG \) and the vertical
Fourth DM1, dependent on third M1, for \(\frac{2}{3} \)
Fourth A1 for a correct answer in any form
6(a)

\[mg \quad t = (m + m)(v + v) + (m)(v - u) \quad m \dot{v} \]
\[mg \quad t = m \quad v + u \quad m \]
\[g = \frac{dv}{dt} + \frac{u}{m} \frac{dm}{dt} \]
\[m = m_0 (5 - 2t) \quad \frac{dm}{dt} = 2m_0 \]
\[9.8 \quad \frac{u}{m_0 (5 - 2t)} (2m_0) = \frac{dv}{dt} \]
\[\frac{2u}{(5 - 2t)} 9.8 = \frac{dv}{dt} \quad \text{PRINTED} \]

(b)

\[v = u \ln(5 - 2t) \quad 9.8t (+C) \]
\[t = 0, v = 0 \quad C = u \ln 5 \]
\[v = u \ln \left(\frac{5}{(5 - 2t)} \right) 9.8t \]
\[m_0 = m_0 (5 - 2t) \quad t = 2 \]
\[v = u \ln 5 \quad 19.6 \text{ (m s}^{-1}) \]

Notes

6(a)
First M1 for a general impulse-momentum equation (correct number of terms, excluding any \(m \quad v \) terms)
First A2 for a correct equation
B1 for \(m = m_0 (5 - 2t) \quad \frac{dm}{dt} = 2m_0 \)
Third M1 for substituting for \(dm/dt \) to produce an equation in \(v \) and \(t \) only.
Third A1 for PRINTED ANSWER (need 9.8 not g)

6(b)
First M1 for separating the variables and integrating
First A1 for a correct solution (without \(C \))
Second M1 for using conditions (or lower limits)
Second A1 for a correct particular solution in \(t \)
Third M1 for putting \(m = m_0 \) and solving for \(t \).
Use of \(t = 2 \) can imply this M mark
Third A1 for correct answer (allow 2g instead of 19.6)
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>7(a)</td>
<td>[J.2a = \frac{4}{3}ma^2] [= \frac{3J}{2ma}]</td>
<td>M1 A1</td>
</tr>
<tr>
<td>(b)</td>
<td>[mga \sin 30^\circ = \frac{4}{3}ma^2] [</td>
<td>\cdot</td>
</tr>
<tr>
<td>(c)</td>
<td>[X \ mg \cos 60^\circ = ma] [\frac{1}{2} \ mg = m(\frac{3g}{8a})a] [X = \frac{mg}{8}]</td>
<td>M1 A1 A1</td>
</tr>
</tbody>
</table>

Notes

7(a)
- First M1 for moment of impulse = Gain in Angular Momentum with all terms dimensionally correct
- First A1 for a correct equation
- Second A1 for correct answer

7(b)
- First M1 for taking moments about the axis with all terms dimensionally correct
- First A1 for a correct equation \(\text{need not be substituted}\)
- Second A1 for a correct positive answer

Alternative:
- First M1 for differentiating an energy equation with all terms dimensionally correct
- First A1 for a correct equation
- Second A1 for a correct positive answer

7(c)
- First M1 for resolving perpendicular to the lamina, with correct no. of terms, with all terms dimensionally correct
- First and Second A1’s for a correct equation \(\text{need not be substituted}\)
- Second M1 for substituting for (must be dimensionally correct) \(\cdot\)
- Third A1 for answer

| 11 | 11 |