

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE A Level Further Mathematics (9FM0) Paper 3B -Further Statistics 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P69194A* Publications Code 9FM0_3B_2206_MS* All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 80.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most</u> <u>complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.

7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Q	u	Scheme		Marks	AOs		
1(a	a)	$r = P(X = 3) \times 100$ or $r = P(X = 1) \times 100$	or $s = P(X = 2) \times 100$	M1	3.4		
		r = 25 (value may be in table)		A1	1.1b		
		$s = \overline{37.5}$ (value may be in table)		A1	1.1b		
				(3)			
		H ₁ : $B(4,0.5)$ is not a suitable model (o.e.)	Condone B(0.5, 4)	B1	2.5		
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.21	M1	1.1b		
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	12.96				
		$\sum \frac{(O_i - E_i)^2}{E_i} = 10.56 \text{ or } \sum \frac{O_i^2}{E_i} - N = 110$	$0.56 - 100 = 10.56 \left(=\frac{264}{25}\right)$	A1	1.1b		
		v = 5 - 1 = 4		B1	1.1b		
		CV = 9.488 (Calc 9.487729035)		B1ft	1.1b		
		Significant so there is evidence that the rese suitable	earcher's model is not	A1	2.2b		
				(6)			
					Cotal 9		
(a)	Μ	1 Using the Binomial model to expected May be implied by a correct value of <i>r</i>	-				
	1 st /						
	2 nd	A1 for $s = 37.5$					
SC	"В	" If M0 scored but their values of <i>r</i> and <i>s</i>	satisfy $2r + s = 87.5$ score as N	M0A0A1			
	4 -4 7						
(b)	1 st]	Both hypotheses correct using the correct binomial with $n = 4$ and $p = 0.5$	ect notation in at least one or w	ritten in fu	ll e.g.		
	Μ	1 Calculating either $\frac{(O_i - E_i)^2}{E_i}$ or $\frac{O_i^2}{E_i}$ a	t least 4 correct. Implied by sig	ght of awrt	10.6		
	1 st /	Allow 10.6 (from correct working)					
	2 nd	\ `	9.48 or 9.49 or better				
	3 rd B	1ft For 9.488 or better. Can ft their dof N	B $\chi_3^2(5\%) = 7.815$ (allow awr	t 7.815)			
	2 nd						
			Evaluating the outcome by drawing a correct inference.				
		Compatible with comparison of 10.56 or 10.6 with their CV (which must be > 1)					
		They must say model not suitable (o.e	.)				
		They do not need to state the comparise	on or say reject H ₀ etc				
		No need to explicitly see B(4, 0.5) men	tioned here				

Question

2	a)	$\left[\mathrm{E}(X) = \right] 0.2b - 1$	B1	1.1b			
			(1)				
((b) E	$(X^2) = 25 \times 0.3 + 1 \times 0.25 [+0 \times 0.1] + 25 \times 0.15 + 0.2b^2 [= 11.5 + 0.2b^2]$	M1	1.1b			
		"11.5+0.2 b^2 "-("0.2 b -1") ² [=34.26]	M1	3.1a			
		$0.16b^{2} + 0.4b - 23.76 [= 0] \underline{\text{or}} \frac{4}{25}b^{2} + \frac{2}{5}b - \frac{594}{25} [= 0]$	M1	1.1b			
		b = 11 [since $b > 5$]	A1	2.2a			
			(4)				
(c)		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1ft	2.1 1.1b			
		$P(X^{2} < 2-3X) = P(X = -1) + P(X = 0)$	M1	2.2a			
		= <u>0.35</u>	A1	1.1b			
			(4) T	otal 9			
(a)	B 1	Correct expression for $E(X)$					
(b)	(b) 1^{st} M1 Correct attempt at $E(X^2)$ using $\sum x^2 P(X = x)$ at least 3 correct non- Allow $(-5)^2$ etc			ucts			
	2 nd M1	Realising that $Var(X) = E(X^2) - [E(X)]^2$ needs to be used					
	3 rd M1	requering their equation to u b term quantanet. The reast 2 terms corre	ct.				
	A 1	Allow e.g. $0.16b^2 + 0.4b = 23.76$ Condone missing "=0"					
	A1	For 11 only (from the correct equation) so –13.5 must be eliminated Correct answer with no incorrect working seen scores					
(c)	1 st M1	At least 4 values correct for $(X^2 \text{ and } 2 - 3X)$ or for $(X^2 - 2 \text{ and } - 3X)$ $X^2 + 3X - 2$ (o.e.) Allow for solving equation with one sign error	() or $X^2 + 3$	3X <u>or</u>			
	1 st A1ft	All correct or correct ft with their <i>b</i> but must have $b > 5$ (accurate to	1 sf)				
		Allow solving equation to get awrt -3.6 and awrt 0.56 or $\frac{-3\pm\sqrt{17}}{2}$	(ft their b >	> 5)			
	If there are omissions but no errors in the lists of values then if 2 nd M are scored then the 1 st M1 and 1 st A1 can be given by implication.		M1 and 2^{n}	¹ A1			
	2 nd M1	For identifying the correct values of X required i.e. $X = -1$ and $X = 0$					
	2 nd A1	0.35					
		NB It is possible to score M0A0M1A1 here if their table of values is	incorrect				
		Correct answer with no incorrect working seen scores 4	1/4				
		(Allow correct use of their $b > 5$)					

Qı	u		Scheme	Marks	AOs
3(a	a) 7	W ~]	Po(11.2) and $P(W19) = 1 - P(W, 18)$ or suitable 3sf probs	M1	3.4
		P(W	(19) = 0.020776 awrt <u>0.021</u>	A1	1.1b
				(2)	
(b	7	_	# calls per day, $S \sim Po(0.4)$] $P(S > 1) = 0.061551$ awrt 0.0616	B1	1.1b
			8(250, "0.061551")	M1	3.3
	-	<i>Y</i> ~ P	Po((15.3879)) [Accept Po(15.4) or better] <u>or</u> suitable 3sf probs	M1	3.4
			= 0.14751 awrt <u>0.148</u>	A1	1.1b
(c) 1	Hot 2	$\lambda = 16.8$ H ₁ : $\lambda < 16.8$	(4) B1	2.5
			$Po(16.8)$ III. $\lambda < 10.8$	B1 B1	2. <i>3</i> 3.3
			(, 8) = 0.014	M1	1.1b
	-	There	4 < 0.05 or there is sufficient evidence to reject H ₀] e is sufficient evidence at the 5% level of significance that the per of calls received per day is lower in winter	A1	2.2b
	-		<u>rate of calls</u> is <u>lower</u> in winter or <u>less calls per day</u> in <u>winter (o.e.)</u>	(4)	
(d	.)	<i>C</i> ~]	$Po(0.4 \times n + 0.2 \times n) [= Po(0.6n)]$ or $D \sim B(n, e^{-0.6} \text{ or awrt } 0.549)$	M1	3.1b
		$e^{-0.6n}$	$< 0.001 \text{ or } -0.6n < \ln(0.001) \text{ or } n > 11.5$	M1	1.1b
			$n = \underline{12}$	A1 (3)	1.1b
(e)) 7	The r	ate of calls per day is constant or the number of calls occurring in	B1	2.4
	1	non-o	overlapping time <u>intervals</u> is <u>independent</u> . or <u>number of calls per</u> <u>s independent</u> (o.e.)	(1)	
					tal 14
(a)		M1 A1	For using the model Po(11.2) implied by sight of: 0.02077 or 0.98 awrt 0.021	89 or 0.9	792
(b)		B1	awrt 0.0616		
	1 st]	M1	Setting up a new model B(250, "0.0616") [condone B("0.0616", 250))]	
	2 nd]	M1	Seeing the model Po(their np) implied by sight of: 0.1475 or 0.8997	75 or 0.852	24
		A1	awrt 0.148		
SC			if no approximation used(and 1 st M1 not seen) an answer of awrt 0. B1M1M0A0	.140 could	get
(c)		B1	Both hypotheses correct using λ or μ and 16.8 or 0.4 [Accept their		-
	2 nd		Realising $Po(16.8)$ needs to be used. Sight or use of, implied by correct provide the set of the		
		M1	For 0.014 or better (0.0141) or CR X " 9 oe must be CR and no	-	•
			[Allow CR X ,, 10 with probability $P(X ,, 10) = 0$		
	A1 Indep of 1 st B1 (must see 2 nd B1 and M1 scored) for a correct inference in context				
(d)		^t M1	Selecting a suitable model. Sight of Po(0.6 <i>n</i>) or B(<i>n</i> , $e^{-0.6}$) or implication	•	M1
	2 nd]	M1	For a correct inequality or equality involving n [Condone slips in so	0-	
			Allow MR i.e. misread of 0.01 for 0.001 (or similar) to score M1M1		
		A1	n = 12 cao [Correct answer with no incorrect working seen scores 3]	8/3]	
(e)		B1	Allow equivalent statements. Underlined words required.		

Question		Scheme				Marks	AOs
4 (a	l) (i)	$[W \sim \text{Geo}(0.11)] P(W = 6) = (0.89)^5 (0)^{10}$.11)			M1	3.3
		=	0.06142	. awrt [<u>).0614</u>	A1	1.1b
(::)						(2)	
(ii)		$P(W,, 5) = 1 - (0.89)^5$		I		M1	3.1b
		= 0.44159		awrt	<u>).442</u>	A1	1.1b
(iii)						(2)	
0	11)	$X \sim B(6, 0.11)$		I		M1	3.3
		P(X=4) = 0.001739		awrt <u>0.</u>	<u>00174</u>	A1	1.1b
						(2)	
(1	v)	$[Y \sim NB(4, 0.11)] using a neg bin$		V~B(6, 0.1 P(V4) ∶		M1	3.3
		P(Y, 6) = P(Y = 4) + P(Y = 5) + P(Y = 6)	·)			M1	3.1b
		$= (0.11)^{4} + {\binom{4}{3}} (0.11)^{3} (0.89)^{1} \times 0.11 + {\binom{4}{3}} (0.89)^{1} \times 0.11 + {\binom{4}{3}$	$\binom{5}{3}(0.11)^3$	$(0.89)^2 \times$	0.11	M1	3.4
		= 0.001827		awrt <u>0.</u>	<u>00183</u>	A1 (4)	1.1b
(b)	P(Zac wins) = $0.89 \times 0.11 + (0.89)^3 \times 0.11$	$+(0.89)^{5}$	×0.11+		M1	3.1b
		$=\frac{0.89\times0.11}{1-(0.89)^2}$ oe				M1	1.1b
		= 0.47089= 0.471*				A1cso*	2.1
						(3)	
(-)(2)	MI	Connect method to find $\mathbf{P}(W-\epsilon)$ or (n)	$\frac{5}{1}$ (1 m) f	on 0 1	1		otal 13
(a)(i)	M1	Correct method to find $P(W = 6) eg(p)$	· /		1 OF 0.85	1	
	A1	awrt 0.0614 (Correct ans with no incorr	rect worki	ng 2/2)			
(ii)	M1	Correct method to find $P(W,, 5)$					
	A1	awrt 0.442 (Correct ans with no incorre		<u> </u>			
(iii)	M1	For using the model $B(6, 0.11)$ allow $B(6, 0.11)$			0.0017	or awrt 0.	114]
	A1	awrt 0.00174 (Correct ans with no incor		-			
(iv)		In part (iv) we can accept correct e	•		-		
	1 st M1	For using a negative binomial model imp	lied by co	$\operatorname{Prrect} P(Y)$	= 5) or I	P(Y=6)	
	2 nd M1	Correct method to find $P(Y_{n}, 6)$		4	5	(5
	3 rd M1	At least two correct terms $\underline{\text{or}}$ $P(Y)$	= a) 1.	46×10 ⁻⁴	5.21×1	0 ⁻⁴ 1.16×	×10 ⁻³
	5 111	1 - 0.99817 from $1 - P(V, 3)$		74×10^{-3}	8.60×1		×10 ⁻⁶
	A1	awrt 0.00183		-	_		
(b)	1 st M1	Forming the correct probability of Zac winning <u>or</u> identify <i>a</i> and <i>r</i> of GP Allow for $p = (0.11) \times 0 + (1-0.11)(1-p)$			(-p)		
	2 nd M1	^d M1 Using sum to infinity of a GP Allow for $p = \frac{0.89}{1+0.89}$					
	A1*	Previous method marks must be seen lead	ding to an	answer 0	.471 (NG	OT awrt 0.	471)

Question	n Scheme	Marks	AOs
5	Geo (0.3) $\mu = \frac{1}{0.3} \left[\text{ or exact equivalent e.g. } \frac{10}{3} \right]$	B1	1.1b
	$\sigma^2 = \frac{1 - 0.3}{0.3^2} \left[\text{ or exact equivalent e.g. } \frac{70}{9} \right]$	B1	1.1b
	$\operatorname{CLT} \Rightarrow \overline{X} \approx \operatorname{N}\left(\frac{10}{3},\right)$ oe	M1	2.1
	$\Rightarrow \overline{X} \approx N\left(\frac{10}{3}, \frac{7}{135}\right)$ and attempt (sight of) $P\left(\overline{X} < 3.45\right)$	M1	3.4
	= 0.69579 awrt <u>0.696</u>	A1 (5)	1.1b
		Г	Cotal 5
1 st B1	correct mean		
2 nd B1	correct Var may be implied by sight of $\frac{7}{135}$ in distribution of \overline{X}		
1 st M1	For use of CLT (must see \overline{X} and Normal with mean correct ft) or		
	sight of $N\left(\frac{10}{3}, \frac{7}{135}\right)$ or $N\left("\frac{10}{3}", \frac{"70"}{"9"\times 150}\right)$ with any letter		
	Allow 3.33 or better for $\frac{10}{3}$ and 7.78 or better for $\frac{70}{9}$		
	May be implied by 2 nd M1		
2 nd M1			
	Using the normal distribution to find $P(\overline{X} < 3.45)$ ft their " $\frac{10}{3}$ " and $\frac{\frac{70}{9}}{150}$ May be implied by correct answer.		
	May be implied by correct answer.		
A1	awrt 0.696		
	Correct answer with no incorrect working scores 5/5		
	Alternative (Use of $Y = \sum X$)		
	$\mu = \frac{150}{0.3} [= 500]$	B1	
	$\sigma^2 = \frac{150 \times 0.7}{0.3^2} \left[\frac{3500}{3} \right] = 1166.\dot{6}$	B1	
	$\Rightarrow Y \approx N\left(500, \frac{3500}{3}\right)$	M1	
	P(Y < 517.5)	M1	
	= 0.69579	A1	

Question	Scheme	Marks	AOs
6(a)	$G_{\nu}(t) = \frac{9}{25}t^{2} + \frac{12}{25}t^{3} + \frac{4}{25}t^{4} \qquad \underline{\text{or}} \qquad t^{2}\left(\frac{9}{25} + \frac{12}{25}t + \frac{4}{25}t^{2}\right)$	M1	1.1b
	$=t^2\left(\frac{2}{5}t+\frac{3}{5}\right)^2*$	A1* cso	2.1
		(2)	
(b)(i)	$G_{W}'(t) = 2t \left(\frac{2}{5}t + \frac{3}{5}\right)^4 + \left(\frac{2}{5}t + \frac{3}{5}\right)^5$	M1	2.1
	$\left[\mathbf{G}_{W}'(1) = \right] \underline{3}$	A1	1.1b
(ii)	$G_{W}''(t) = 2\left(\frac{2}{5}t + \frac{3}{5}\right)^{4} + \frac{16}{5}t\left(\frac{2}{5}t + \frac{3}{5}\right)^{3} + 2\left(\frac{2}{5}t + \frac{3}{5}\right)^{4}$ oe	M1	2.1
	$G_W''(1) = \frac{36}{5}$	A1	1.1b
	$Var(W) = "\frac{36}{5}" + "3" - ("3")^{2}$	M1	2.1
	$=\frac{6}{5}$	A1	1.1b
		(6)	
(c)	$G_{X}(t) = t^{2} \left(\frac{2}{5}t + \frac{3}{5}\right)^{2} \times t \left(\frac{2}{5}t + \frac{3}{5}\right)^{5}$	M1	3.1a
	$=t^{3}\left(\frac{2}{5}t+\frac{3}{5}\right)^{7}$	A1	1.1b
		(2)	
(d)	$G_{Y}(t) = t^{3} \times (t^{2})^{3} \times (\frac{2}{5}t^{2} + \frac{3}{5})^{7}$	M1	3.1a
	$= t^9 \left(\frac{2}{5}t^2 + \frac{3}{5}\right)^7$	A1	1.1b
		(2)	
(e)	P(Y = 15) is coefficient of t^{15} ie + $t^9 \times {}^7C_3 \left(\frac{2}{5}t^2\right)^3 \left(\frac{3}{5}\right)^4$ +	M1	1.1b
	<u>or</u> P(X = 6) need coefficient of t^6 i.e. $\dots + t^3 \times {}^7C_3 \left(\frac{2}{5}t\right)^3 \left(\frac{3}{5}\right)^4 + \dots$		
	$\left[P(Y=15)=\right]\frac{22680}{78125}=\frac{4536}{15625}=0.290304$	A1	1.1b
		(2)	- `
		(14 n	narks)

Not	es:	
(a)	M1	A correct un-simplified pgf based on $\sum t^{\nu} P(V = \nu)$
	A1*	cso must see an un-simplified version i.e. M1 scored and no incorrect working seen
(b) (i)	M1	Differentiating using the product rule to find $G_w'(t)$ Allow un-simplified e.g. $5 \times \frac{2}{5}t$ Need two terms added and at least one correct. If they expand we need 3 correct.
	A1	3 from a correct derivative
(ii)	1 st M1	Attempt $G_w''(t)$ ft their $G_w'(t)$ [must be at least 2 terms or a product], one correct ft term, same rule for differentiating a product
	1 st A1	$\frac{36}{5}$ or 7.2 from a correct derivative
	2 nd M1	$\mathbf{G}_{W}''(1) + \mathbf{G}_{W}'(1) - \left(\mathbf{G}_{W}'(1)\right)^{2}$ ft their $\mathbf{G}_{W}''(t)$ if different from $\mathbf{G}_{W}'(t)$ and $\mathbf{G}_{W}(t)$
	2 nd A1	Dep on M3A2 $\frac{6}{5}$ or 1.2
(c)	M1	Realising the need to use $G_{X}(t) = G_{V}(t) \times G_{W}(t)$
	A1	$t^3\left(\frac{2}{5}t+\frac{3}{5}\right)^7$
(d)	M1	Realising the need to multiply through by $t^3 \underline{\text{or}}$ substitute t^2 for $t \underline{\text{or}}$ sight of $t^3 G_x(t^2)$
	A1	$t^9 \left(\frac{2}{5}t^2 + \frac{3}{5}\right)^7$ oe Need not be in its simplest form
		Attempting to find correct coefficient of $t^n \underline{\text{or}}$ identify $Y = 2J + 9$ where $J \sim B(7, 0.4)$
(e)		Need an expression can ft their $G_{Y}(t)$ or $G_{X}(t)$ of the form $t^{n}(at^{m}+b)^{k}$
		Allow a statement that $P(Y = 15) = 0$ if it follows from their pgf
	A1	For a correct exact answer or allow awrt 0.2903 Allow 0.29 from correct expression

Alternative for (b)

(b)	$W = P + 1$ where $P \sim B(5, 0.4)$ so $Var(W) = Var(P)$		
(i)	$G_{p}'(t) = 2\left(\frac{2}{5}t + \frac{3}{5}\right)^{4}$	M1	2.1
	$G_{W}'(1) = 2 + 1 = 3$	A1	1.1b
(ii)	$G_{p}''(t) = \frac{16}{5} \left(\frac{2}{5}t + \frac{3}{5}\right)^{3}; G_{p}''(1) = \frac{16}{5}$	M1; A1	2.1 1.1b
	Var(W) = " $\frac{16}{5}$ "+"2"-("2") ² ; = $\frac{6}{5}$	M1; A1	2.1 1.1b
	MR They use $G_V(t)$ instead of $G_W(t)$ Provided some correct differenti	ation seen	:
SC	Award B1 for $E(V) = \frac{14}{5}$ and B1 for $Var(V) = \frac{12}{25}$ score as M0A1M0A	A0M0A1	

Que	estion	Scheme	Marks	Aos
7	'(a)	$\overline{X} \sim N(1000, 90)$ (May be implied by correct prob or z value seen)	M1	3.3
		$P(\overline{X} > 1020) = 0.0175 \text{ or } z = 2.108$	A1	3.4
		0.0175 < 0.025 or $z = 2.108 > 1.96$ therefore reject H ₀ .	M1	1.1b
		There is evidence that the mean weight of the flour in a bag is not	A1	2.2b
		<u>1000 g</u> or evidence of a <u>change</u> in <u>mean weight</u> of <u>flour</u> in a bag	cso (4)	2.20
	(b)	$\left[\overline{Y} \sim N\left(1000, \frac{900}{n}\right) \Rightarrow \right] \frac{c - 1000}{30/\sqrt{n}} = 1.6449$	M1	3.4
		$c = 1000 + \frac{49.347}{\sqrt{n}}$	A1	1.1b
	(c)	49 347	(2)	
		$"1000 + \frac{10.017}{\sqrt{n}}$ "-1020	M1	3.4
		$\frac{"1000 + \frac{49.347}{\sqrt{n}}"-1020}{\frac{30}{\sqrt{n}}} = -2.5758$	A1ft	1.1b
		$\frac{126.621}{\sqrt{n}} = 20 \text{or} \qquad \frac{49.34}{c - 1000} = \frac{-77.274}{c - 1020} \text{(Allow 2sf accuracy)}$	dM1	1.1b
		$\sqrt{n} \qquad c = 1000 c = 1020$ $n = \underline{40}$	A1	2.1
		c = 1007.8 awrt <u>1010</u>	A1	1.1b
			(5) (11 m	narks)
Not	es:		(11 11	1 a 1 K5)
(a)	1 st M1	Setting up the correct model. Normal with $\mu = 1000, \sigma^2 = 90$ or $\sigma =$	$\sqrt{90}$ or awr	t 9.49
	4 st 1 4	Using the model to find the correct z value or $P(\overline{X} > 1020) = awrt 0$.	0175	
	1 st A1	Allow CR \overline{C} 1018.59 awrt 1019 [> is OK] Ignore lower CR pr		000
	2 nd M1	Correct comparison or non-contextual conclusion. Allow comparison	of 1020 wi	
		critical region. Dep on $P(\overline{X} > 1020)$ M0 if there are contradictory st	atements.	
	2 nd A1	cso dep on M1A1M1 for a correct conclusion in context with underl Do NOT accept "mean weight has <u>increased</u> "	ned words	
		For Finding the CR using the Normal distribution. Condone $\sigma = \sqrt{2}$	$\frac{30}{n}$ to score	M1
(b)	M1	$\frac{c-1000}{\frac{30}{\sqrt{n}}} = z \text{ where } z > 1.5$ Allow any inequality or = for M M1 A1ft M1 in (c)	1 in (b) an	d
	A1	A correct equation in the form $c =$ and for use of awrt 1.6449		
	(implied by awrt 49.3[4]) Condone X used for c (o.e.)			
(c) $1^{\text{st}} \mathbf{M1}$ Standardising using their <i>c</i> (letter or expression) and equating to <i>z</i> ($ z > 2$) to f an equation in <i>n</i> or <i>n</i> and <i>c</i> . Can ft their σ used in (b) for M1A1ft here				51111
$1^{st}A1ft$ Ft their "c" for a correct equation with -2.58 (or 1.64 or 1.65 used in (
	2 nd dM1	Dependent 1 st M1. Isolating or eliminating either \sqrt{n} or n or n elimin	ating c lea	ding
	2 nd A1	to an equation for <i>n</i> or <i>c</i> For 40 (allow 41) Must be an integer. With correct working. $ $ e.g. C	heck correc	nt or
	2 A1 3 rd A1		en used	