

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE In Mathematics (9MA0) Paper 31 Statistics

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number P72130A_*
Publications Code 9MA0_31_2206_MS*
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 50.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 5. Where a candidate has made multiple responses <u>and indicates which response</u> they wish to submit, examiners should mark this response.

 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark the final answer which is the answer that is the <u>most complete</u>.
- 6. Ignore wrong working or incorrect statements following a correct answer.

7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

Ques	Scheme Scheme			Marks	AOs	
1(a)(i)		$X \sim B(15, 0.48)$		M1	3.3	
		P(X=3) = 0.019668 awrt 0.0197		A1	3.4	
(i	i)		013	awrt 0.920	A1	1.1b
					(3)	
(1)	<i>Y</i> is the number of hits	Mis the	number of misses	(0)	
					D1	2.2
		$Y \sim N(120, 62.4)$ $P(X > 110) \approx P(Y > 110.5)$		$\frac{(130,62.4)}{110) \approx P(M < 139.5)}$	B1	3.3
		$ \left[= P\left(Z > \frac{110.5 - "120"}{\sqrt{"62.4"}} \right) \right] $	r ` /	$<\frac{139.5 - "130"}{\sqrt{"62.4"}}$	M1	3.4
		[8544	Ψ 02.4 / <u>J</u>	A1	1.1b
		0.0				1.10
					(3)	
					(6 n	narks)
			Notes:	(1) (1) (1)	25/15.0	10)
		Writing or using the binomial distr or in words: <u>binomial</u> with $n = 15$				
(a)	M1					
		Allow for ${}^{15}C_3 \times 0.48^3 \times 0.52^{12}$ as the	nis is "cor	rect use" Condone B(0.48,	15)	
(i)	A1	awrt 0.0197				
(ii)	A1	awrt 0.920 (Allow 0.92)				
(b)	B1	Setting up a correct Normal model		` ,	. ,	
		$N\left(120, \frac{312}{5}\right)$ or $N\left(130, \frac{312}{5}\right)$ or r	nay be av	varded if used correctly in s	tandardisa	tion
		or in words: Normal with mean = $120/130$ and variance = 62.4 or sd = $\sqrt{62.4}$ condone N(120, $\sqrt{62.4}$) or N(130, $\sqrt{62.4}$) or sd = 62.4				
		Look out for $\sigma = \frac{\sqrt{1560}}{5}$ or $\frac{2\sqrt{390}}{5}$ or awrt 7.90 (condone 7.9)				
		This may be implied by sight of 0.	897 or 0.8	8854		
	M1	Sight of the continuity correction with a normal distribution				
110.5 or 111.5 or 109.5			139.5 or 140.5 or 138.5			
NB we will also allow 129.5 or 130.5 or NB we will also allow 128.5 Continuity correction may be seen in standardisation						
	A 4	NB No continuity correction(CC) gives awrt 0.897 which is M0 unless CC seen			. 100.5	
	A1	awrt 0.8854 or awrt 0.885 dependent on sight of >110.5 or <129.5 or <139.5 or >120 Allow \leq or \geq instead of $<$ or $>$			>120.5	
		NB 0.885548 from B(250, 0.48) scores N	10A0		

Qı	u	Scheme			Marks	AOs	
2(2	a)	$[P(L < 7.902) = 0.025 \Rightarrow] \frac{7.902 - 8}{r} =$	= -1.96 oe		M1	3.4	
	-	<i>N</i>	=]0.05*		A1cso*	1.1b	
						1.10	
		SC B1(mark as M0A1) for $\frac{7.902 - 8}{0.05}$ =	$-1.96 \Rightarrow 0.0$)24998			
(b)	$P(7.94 \le L \le 8.09) = 0.8490$ awrt 0.849			B1	1.1b	
(c) [TD(1 704) 10.115060 (FD (I 0	00) 1002502 ((1) B1	1.1b	
(•,	L	[P(L < 7.94) =] 0.115069(awrt 0.115) or $[P(L > 8.09) =] 0.03593(awrt 0.036)$					
		[P(L < 7.94) =] 0.115069(awrt 0.115)	& $[P(L > 8)]$	(.09) =] 0.03593 (awrt 0.036)	B1	1.1b	
		Expected income per 500 rods = \sum (In	come×prob	ability×500)			
	($(500 \times "0.849" \times 0.5) + (500 \times "0.1150"$	" $\times 0.05$) + (50	00×"0.03593"×0.4) or	Μ1	2.4	
	E	Expected profit per rod = $\sum (Profit \times profit)$	obability)		M1	3.4	
		$0.30 \times "0.849" + -0.15 \times "0.1150" + 0.20$					
	I	Expected profit per 500 rods					
	1	$500 \times \sum (Profit \times probability)$ or $\sum (Incompared Profit \times probability)$,	M1d	3.1b	
		$= 500 \times "0.2446" \qquad \text{or} = "222.3" - 500 \times 0.2$ $= [\pounds] 122.3 \qquad \text{awrt } [\pounds] 122$					
		- [\$]122.3 awit [\$]122			A1 (5)	1.1b	
(d	.)	Let $X \sim B(200, 0.015)$		M1	3.3		
		$P(X \leqslant 5) = P(X \geqslant 6) =$			M1	1.1b	
		0.9176 0.0824 Manufacturer is unlikely to achieve their Manufacturer is unlikely to achieve their			A1	1.1b	
		aim since $0.9176 < 0.95$ aim since $0.0824 > 0.05$			A1ft	2.4	
		Notes					
(a)	M		Notes:	llow σ for r and awrt ±1.96	(12 n	narks)	
(4)	A1				king seen		
(b)		*					
(c)	B1	awrt 0.115 (Implied by awrt 57.5 for	number of ro	ds) or awrt 0.036 (Implied by aw	rt 18 for n	umber	
		of rods) awrt 0.115 (Implied by awrt 57.5 for	number of ro	ds) and awrt 0.036 (Implied by a	wrt 18 for		
	B1	number of rods)					
		Correct method to find the total incorextras	wo correct	and no			
	M	or Correct method to find sum of all	correct. M	ay			
		work in pence but need to be consistent. Allow awrt 24.5 or 0.245 Dep on previous method for finding profit for 500 rods. May work in pence but need to be consistent.					
	M1c	Dep on previous method for finding profit for 500 rods. May work in pence but need to be consistent. Allow "0.2446"×500 or "their income" for 500 rods – 500 × 0.2 (accept 499 or 501)					
	A1	All previous marks must be awarded for awrt 122 awrt 12200p					
(I)		Selecting the appropriate model Max	NB if uses any integer values for numbers of rods then it is A0 other than for 18 for $L > 8.09$ Selecting the appropriate model. May be seen or used. Allow B(200,0.985) or Po(3)				
(d)	M	Condone B(0.015, 200) or B(0.985, 200).					
	M1	Writing or using $P(X \leq 5)$ Do not as	ecept	Writing or using $P(X \ge 6)$ Do		t	
	141.	$P(X < 6)$ unless found $P(X \le 5)$		P(X > 5) unless found $P(X > 5)$	≥ 6)		
	A1	, ,		0.08 or better			
	Δ1	Need at least one of the method marks to be awarded. Correct conclusion with the coal be in words). Ft "their $p = 0.9176$ " as long as $p > 0.9$ If "their 0.9176 " < 0.95 n					
	AI	unlikely If "their $p = 0.91/6$ " as long as $p > 0.9$ If "their $0.91/6$ " 0.93 " unlikely To ft the alternative of the second of			must 06	_	

Question		Scheme		AOs		
3(a)		tr	B1	1.2		
			(1)			
(b)(i)		$\mu = \frac{174.9}{31} = 5.6419$ awrt 5.64	B1	1.1b		
(ii)		$\sigma_r = \sqrt{\frac{3523.283}{31} - \mu^2}$	M1	1.1b		
		= 9.04559 awrt 9.05	A1	1.1b		
			(3)			
	(c)	Leuchars is in the North and Camborne is in the South	M1	2.4		
		The mean is smaller for Leuchars than Camborne therefore there is no evidence that Dian's belief is true	A1ft	2.2b		
			(2)			
((d)	eg $p = 0.27$ is unlikely to be constant.	B1	2.4		
			(1)			
			(7 marks)			
		Notes:				
(a)	B1	Allow Tr or trace or Trace				
(b) (i)	B1	For a correct mean awrt 5.64				
(ii)	M1	For a correct expression for sd including the $\sqrt{}$ Ft their mean				
	A1	awrt 9.05 (Allow <i>s</i> = 9.1932 awrt 9.19) NB awrt to 9.05 or 9.19 with no working is M1 A1				
(c)	M1	For stating Leuchars is North of Camborne oe eg Camborne is further south				
	A1ft	M1 must be awarded. A correct conclusion and correct comment about the means ft their mean in (b) Allow No				
	SC	for No and there are only 2 places used so there is insufficient data. Mark as M0A1 on epen				
(d)	B1	A correct reason referring to independence (needs context as to what is independent) eg consecutive 14 days unlikely to be independent				

Question		Scheme	Marks	AOs		
4(a)		$H_{0:}p = 0.1$ $H_{1:}p \neq 0.1$	B1	2.5		
			(1)			
(1	b)	Use of $X \sim B$ (50, 0.1) implied by sight of one of awrt 0.0052 or awrt 0.9755 or awrt 0.0245	M1	3.4		
		Critical regions $X = 0$ or $X \ge 10$	A1	1.1b		
		$X = 0$ and $X \ge 10$ plus $P(X = 0) = \text{awrt } 0.0052$ and $P(X \ge 10) = \text{awrt } 0.0245$	A1	1.1b		
		SC: Both CR correct with no probabilities and no distribution seen scores M0A1A0				
			(3)			
(c)	0.0297	B1ft	1.1b		
			(1)			
((d)	15 is <u>in the critical region</u> therefore there is evidence to support the <u>manager</u> 's belief	B1ft	2.2b		
			(1)			
		Notes				
(a)	B1	For both hypotheses in terms of p or π . Connected to H_0 and H_1 correct Condone 10% but not 10	ly			
(b)	M1	Using correct distribution to find the probability associated with one ta If the correct distribution is <u>stated</u> (may be seen in part(a)) allow for on correct CR or one of (awrt 0.025 or awrt 0.005 or awrt 0.975) seen concorrect probability statement	e tail of the	e		
	A1	Lower CR $X = 0 / X < 1 / X \le 0 /$ [condone eg P($X = 0$) labelled as CR] Or Upper CR $X \ge 10$ or $X > 9$ [condone P($X \ge 10$) oe labelled as CR]				
	Both CR's correct with the relevant probabilities Allow \cup for "and" and $X > 9$, $X < 1$, A1 $X \le 0$ [do not allow $P(X = 0)$ or $P(X \ge 10)$ oe] Allow CR in different form eg $(9, \infty)$, $[10, \infty)$					
(c)	B1ft	awrt 0.0297 or 2.97% or ft for the sum of the probabilities in (b) for "their 2 critical regions" if seen. If none seen it must be awrt 0.0297				
(d)	A correct statement about 15 and "their CR" or sight $P(X \ge 15) = 0.0000738$ and comparison with "their 0.0245 " and a compatible correct statement in context. eg There is evidence that there has been a change in the proportion/probability arriving late Condone increase rather than change Do not allow contradicting statements. NB No CR given in (b) then B0					

Question		Scheme	Marks	AOs			
5(a) (b)		$\frac{365}{1825}$ or $\frac{1}{5}$ or 0.2 oe	B1	1.1b			
		1825 5		1.10			
		170 34	(1)				
		$\frac{170}{1825}$ or $\frac{34}{365}$ or awrt 0.093	B1	1.1b			
		1023 303	(1)				
(c)		$90 \times 0.4 + 80 \times 0.05 = 40$ or $90 \times 0.6 + 80 \times 0.95 = 130$ or		2 11			
		$740 \times 0.65[=481]$ or $740 \times 0.35[=259]$	M1	3.1b			
		H (40 123 412 R 481 259 133 F 130	B1 B1 A1	1.1b 1.1b 1.1b			
			(4)				
(d)		$P(R' \cap F) = \frac{380}{1825} \left[= \frac{76}{365} = 0.208 \right]$ oe awrt 0.208	B1	1.1b			
		$1(K+17) = \frac{1}{1825} \left[\frac{365}{365} = 0.208 \right]$ 60 and 0.208		1.10			
(a)		[122 · #120#]#262#	(1)				
(e)		$\left[\frac{133 + "130"}{1825} = \right] \frac{"263"}{1825}$ awrt 0.144	B1ft	1.1b			
			(1)				
(f)		247 + "481"		2.4			
		247 + "481" + 123 + "40"	M1	3.4			
		$=\frac{728}{301}$ awrt 0.817	A1	1.1b			
		891	(2)				
		Notes: (2) (10 mark					
		Look out for answers given in the question. If you see answers in the					
		in the answer space those in the answer space take precedence.					
(a)	B1	Allow equivalent					
(b)	B1	Allow equivalent Correct method to find one of the values 40 or 130 or 481 or 250					
(c)	M1	Correct method to find one of the values 40 or 130 or 481or 259 Implied by 40, 481, 259 or 130 seen in correct place on diagram					
	B1	One of the highlighted correct					
B1		A second value highlighted correct or their ("259"+" 481") = 740 or					
	their $("40"+" 481") = 521$ or their $("40"+"130") = 170$						
	A1	· · · · · · · · · · · · · · · · · · ·					
(d)	B 1	380/1825oe or awrt 0.208					
(e)	B1ft	Correct answer or Ft their 130 (>0) do not allow if blank Allow ft correct to 3 sf.					
(f)	For a single fraction with the numerator $<$ denominator and n is an integer we will award for $n/891$ or $n/(\text{sum of their 4 values in } H$, each $> 0)$ or awrt 0.817			i11 			
	A1	728/891 oe or awrt 0.817					

Que	estion	Sch	Marks	AOs				
6(a)		eg As the number of minutes <u>exercise</u> (<i>m</i>) increases the resting <u>heart rate</u> (<i>h</i>) decreases or the gradient of the curve is becoming flatter with increasing <i>m</i> : diminishing effect of each <u>additional minute</u> of <u>exercise</u>		B1	2.4			
	<u> </u>							
((b)	$H_0: \rho = 0 \ H_1: \rho < 0$			2.5			
		Critical value – 0.3887 (Allow ±)			1.1b			
		There is evidence that the product moment correlation is less than 0 / there is a negative correlation			2.2b			
	(-)			(3)				
((c)	$\log_{10} h = -0.05 \log_{10} m + 1.92$	$h = am^k \rightarrow \log_{10} h = \log_{10} am^k$	M1	1.1b			
		$\log_{10} h = -\log_{10} m^{0.05} + 1.92 \text{ or}$ $\log_{10} h = \log_{10} m^{-0.05} + 1.92 \text{ or}$ $h = 10^{1.92 - 0.05 \log_{10} m} \text{ oe}$	$\log_{10} h = \log_{10} a + \log_{10} m^k$ or $\log_{10} a = 1.92$	M1	2.1			
		$\log_{10} hm^{0.05} = 1.92 \text{ or}$ $\log_{10} \left(\frac{h}{m^{-0.05}}\right) = 1.92 \text{ or}$ $h = 10^{1.92} \times 10^{-0.05 \log_{10} m} \text{ oe}$	$\log_{10} h = \log_{10} a + k \log_{10} m$	M1	1.1b			
		$hm^{0.05} = 10^{1.92} \text{ or } \frac{h}{m^{-0.05}} = 10^{1.92} \text{ or } h = 10^{1.92} \times 10^{\log_{10} m^{-0.05}}$	$\log_{10} a = 1.92$ and $k = -0.05$	M1	1.1b			
		$h = 10^{1.92} m^{-0.05}$ or $h = 83.17m^{-0.05}$ or $a = \text{awrt } 83.17$ and $k = -0.05$			1.1b			
			(5)					
		eg Idea as one increases the other decrease	Notes: es (in context). Allow use of m and h eg As		marks)			
(a)	B1	decreases. Do not allow negative correlation/ Allow there is a negative correlation/assoc						
(I-)		and resting heart rate (h) oe Both hypotheses correct in terms of ρ (allow p)						
(b)	B1	Both hypotheses correct in terms of p (an	now p)					
		For the cv of -0.3887 or any cv such that $0.3 < cv < 0.5$						
	A1	Independent of hypotheses. Correct conclusion that implies reject H_0 on basis of seeing -0.3887 of they give 0.3887 we must see the comparison 0.3887 < 0.897 and which mentions "pmcc/correlation/relationship" and less than 0 / negative or $\rho < 0$ A contradictory statement scores A0 eg Accept H_0 therefore negative correlation						
(c)		<u> </u>	l no more marks can be scored. Condone	no base				
		Tay be implied by 2nd M1 mark Method 1: Correct substitution for both x and y Method 2: Taking the log of both sides						
	May be implied by 3rd M1 mark M1 Method 1: Correct use of the power log rule or making h the subject Method 2: Correct use of the addition/subtraction log rule							
This line implies M1M1M1 M1 Method 1: Correct use of the addition/subtraction log rule or eq ⁿ in Method 2: A second correct step for correct use of the power log			traction log rule or eq ⁿ in the form $h = 10^{1.9}$	$0.02 \times 10^{-0.05 \log}$	z m			
	М1	This line implies M1M1M1M1						
		Method 1: Correct removal of logs or $h = 10^{1.92} \times 10^{\log m^{-0.05}}$ Method 2: Log a (or a) and k correct						
	1 1	Allow $h = \text{awrt } 83.2 m^{-0.05}$ NB award 5/5 for $a = \text{awrt } 83.2$ and $k = -0.05$ or $h = \text{awrt } 83.2m^{-0.05}$ or $h = 10^{1.92} m^{-0.05}$						
		NB award 3/3 for $a = \text{awrt } 83.2$ and $\kappa = -0.03$ or $h = \text{awrt } 83.2m$ or $h = 10^{10.2} \text{ m}$						

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom