

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE In Statistics (9ST0) Paper 01: Data & Probability

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number 69600 Publications Code 9ST0_01_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

Total marks

The total number of marks for the paper is 80.

Mark types

The Edexcel Statistics mark schemes use the following types of marks:

- M Method marks, awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B Unconditional accuracy** marks are independent of M marks
- E Explanation marks

NOTE: Marks should not be subdivided.

Abbreviations

These are some of the marking abbreviations that will appear in the mark schemes.

- ft follow through
- PI possibly implied
- cao correct answer only
- cso correct solution only (There must be no errors in this part of the question)
- awrt answers which round to
- awfw answers which fall within (a given range)
- SC special case
- nms no method shown
- oe or equivalent
- dep dependent (on a given mark or objective)
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper

Further notes

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied **positively**. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is **no ceiling** on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through.
- All M marks are 'possibly implied' (PI) unless specifically stated otherwise in the 'Notes' column.
- After a **misread**, the subsequent A marks affected are treated as A1ft, but manifestly absurd answers should never be awarded A marks.
- **Crossed out** work should be marked UNLESS the candidate has replaced it with an alternative response.
- If **two solutions** are given, each should be marked, and the resultant mark should be the mean of the two marks, rounded down to the nearest integer if needed.

Question	Sch	eme	Marks	AO	Notes
1(a)	Median from box	plot=35	A1	1.1	
	IQR from box plo	t=9	A1	1.1	Or range=23
	Median from graph=40		A1	1.1	Or comment such as "obviously greater than 35 as it starts at 35"
	IQR from graph=	5 or 7	A1	1.1	Or range=16
	So Kings Cross ha average journey ti	-	E1	1.1	Must have context
	The spread is larg	er for Waterloo	E1	1.1	Must have context
1(b)	The average journey times for Wimbledon and Stevenage commuters from their home to the train are similar.		E1	2.1a	e.g. the distributions are similar.
1(c)	Possible sources	(not exhaustive)			
	Waiting time at th	e station.			
	Distance lived fro	m the station.			
	Traffic during journey to the station.				
	Walking speed.				
			E1, E1	2.1a, 2.1a	Must be related to the first part of the journey.
		Total	9		

Question	Scheme	Marks	AO	Notes
2(a)	To check if the relationship is linear			Condone type of correlation
	To check if correlation is positive or negative			
	To see if the PMCC is an appropriate measure to use			
	To get a rough idea of the PMCC before calculation as a check			
	To check for anomalies			
	To see if there is only one trend			
	Any 2 reasons	E1,E1	1.1, 1.1	
2(b)	Chesapeake Bay Retriever	E1	1.1	
	As it doesn't fit trend of the other data on the graph			
	or	E1	1.1	
	As it is the only breed with male lower than female in the table			
2(c)	PMCC is independent of units	B1	2.1b	oe
	1			e.g. the relationship
2(d)	It would be a value bigger than 0.988 but less than 1.	B1	2.1b	

2(e)	Statements in support			
	Certain breeds of dogs may have a large minimum height and a small maximum height			
	Statements against			
	Breeds of show dog with a larger minimum desired height would be larger dogs in general. You would expect these to have a larger desired max height also.			
	This would require the maximum heights to decrease as minimum heights increase which does not happen in our sample			
	Sample has a positive correlation			
	Minimum desired height can't be higher than maximum desired height which could happen with a negative correlation			
		E1,E1, E1	2.1a	Each of up to 3 statements (may include a mix of support/against)
	Alana is incorrect	E1	3.1b	Awarded for overall disagreement with Alana with attempt at a reason SC supporting statement and Alana is
				correct scores E1E0E0E1
L	Total	10		

Question	Scheme	Marks	AO	Notes
3	Leo should choose a large sample of participants			Condone $n \ge 30$ or implied by context
	His sample of participants should be randomly selected			
	He should show them one painting at a time and ask if they think it was done by a professional or by a child			Or He should show them two paintings at a time and ask which they think is by a professional
	Mention of blocking generally			e.g. randomised block design
	Mention of a sensible specific blocking factor e.g. background in art			
	Leo should collect paintings from several different artists/several different children			Consideration of the bias caused by the painters
	Leo should collect an equal number of paintings from artists and children			
	He could try to pair similar paintings from a child/professional artist			
	Blind/double blind trial mentioned in context			
	He should remove identifying information such as signatures from the artists' work			
	He should keep participants separate so they do not discuss			
	Use same paintings for all participants			
		E1, E1, E1, E1,	3.1a	One mark for each comment up to 7

	E1, E1, E1		
Total	7		

Question	Scheme	Marks	AO	Notes
4(a)	Players with a spend of 0 give the data a heavy skew			Or reverse with whales to right
	Revenue cannot be negative and normal is unbounded			
		E1	2.1a	
4(b)	0.1587	B1	1.2	awrt 0.159
4(c)	$\overline{X} \sim N\left(50, \frac{100}{12}\right)$	M1	1.2	Divides variance by 12 or standard deviation by $\sqrt{12}$
	$P(\overline{X} < 40) = 0.0003$	A1	1.2	awrt
	Alternative			
	$X_1 + \dots + X_{12} \sim N(600, 1200)$	(M1)		
	$P(X_1 + \dots + X_{12} < 480) = 0.0003$	(A1)		
4(d)	Because the standard deviation of \overline{X} is smaller than that of X	E1	2.1b	Or 40 is more standard deviations from the mean
4(e)	Because it's a normal model			
	Because $P(W = 40) = 0$			
	Because W is continuous			
	Any of these	E1	2.1b	
4 (f)	$(1 - "0.1587")^4$	M1	1.2	$(1 - 'their (b)')^4$
	0.50096	A1	1.2	awrt 0.5

4(g)	X~B(12,	0.8413)	M1	1.2	Binomial with n=12 seen or used
			M1	1.2	p = 1 - 'their(b)'
	$P(X \ge 8) = (1 - H)$	$P(X \le 7)) = 0.970$	A1	1.2	awfw 0.969-0.972
4(h)	P(30 < X < 4)	40) = 0.1359	B1	1.2	
	$\frac{P(30 < X < 4)}{P(X > 30)}$	$\frac{40)}{1} = \frac{0.1359}{0.9772}$	M1	1.2	Divides by 0.9772
	0.1	39	A1	1.2	
4(i)	Not appropriate				
	The actual distribudiscrete not contin				
	The normal distribution have an upper limit				Or lower limit of £0
	Whales may be ind £60 meaning the d skew	-			
	Appropriate				
	Could model using $P(X = 5) = P(X = 5)$				Continuity correction suggested
	Conclusion				
	Conclusion that no appropriate/inappr	•			Only valid if agrees with at least one of their reasons
	Three comments		E1, E1, E1	2.1a	
		Total	17		

Question	Scheme	Marks	AO	Notes
5(a)(i)	<i>X</i> ~B(120,0.35) or <i>Y</i> ~B(300,0.15)	M1	2.1a	PI
	$X' \sim N(42,27.3) \text{ or } Y' \sim N(45,38.25)$	M1	2.1a	PI
	42+45=87	E1	1.2	Addition of means (no variances seen scores M1M0E1E0)
	27.3+38.25=65.55	E1	1.2	Addition of variances not standard deviations
5(a)(ii)	$P(T \ge 100) \approx P(T' > 99.5)$	M1	1.2	Continuity correction used
	0.0613	A1	1.2	sc 0.0542~0.0543
				No continuity correction scores M0A1
5(b)	The binomial distributions <i>X</i> & <i>Y</i> can be approximated as a normal distribution as n is sufficiently large	E1	3.1a	Equivalently correct comment regarding np or the mean
	Two independent normal distributions can be added to give a normal distribution, and we assumed independence above	E1	3.1a	
5(c)	All tickets will sell – may not be justifiable as it's unlikely every single ticket will sell every night as some nights may be busier than others	E1	3.1a	Reason why assumption all tickets sell may be incorrect
	Independence of tickets being concessions – may not be justifiable as people may come in groups of friends of similar ages	E1	3.1a	Reason why assumption of independence may be incorrect e.g. not independent because people seeing one film can't see the other

5(d)(i)	420 - T		B 1	1.2	
5(d)(ii)	P = 6(420 - T) + 4T[-200]		M1	1.2	
	P = 2320 - 2T		M1	1.2	Or 2520
	<i>P~N</i> (2146,		A1	1.2	Mean (or 2346)
	,262.2)		A1	1.2	Variance
	P(P > 2125) = 0.9027		A1	1.2	Or >2325
		Total	16		

Question	Scheme	Marks	AO	Notes
6(a)	Explanation of how Caroline chose her parameters			
	$n = 100\ 000$ represents number of hairs on a head	E1	1.3	
	$p = 0.001 = \frac{100}{100000}$ 100 hairs out of 100000 lost per day	E1	1.3	
6(b)	Reasonable			
	Assuming that values for Britain are similar to America			
	$n = 100\ 000$ is reasonable from the article			
	Caroline may have chosen 100 hairs (at the upper end) as she has mostly female customers who lose more hair			

	Total	5		
		E1, E1, E1	3.1b, 3.1b, 3.1b	Any 3 of these comments. Cannot score 3 without a comment about whether this is reasonable or not
Assumes that ever their hair similarly products Probability is diffe women as women hair $n = 100\ 000\ unlias likely to be subdifferences betweeCaroline chose 10was an upper endFamily members rappointments on tunlikely to be indeProbability doesn2account effect of sconditions so notsuffers from one ofThe falling out ofindependent of onone hair falling ousurrounding hairs)$	erent for men and tend to lose more kely to be valid stantial en individuals 0 hairs when that of a range may book he same day so ependent events 't take into stress or health valid if customer of these hairs may not be e another (e.g. it may weaken the			•
Assuming that val are different to Ar				
Unreasonable				

Question	Scheme	Marks	AO	Notes
7(a)	$\frac{7}{56}\left(=\frac{1}{8}\right)$	B1	1.2	oe
7(b)	$\frac{6}{9}\left(=\frac{2}{3}\right)$	B1	1.2	oe
7(c)	$21 \times 20 \times 16 \times 15$	M1	1.2	Numerator
	37 seen or used in denominator	B1	1.2	
	$37 \times 36 \times 35 \times 34$	M1	1.2	Denominator decreases
	× 6	M1	1.2	6 orders (or 4C2)
	$\frac{21}{37} \times \frac{20}{36} \times \frac{16}{35} \times \frac{15}{34} \times 6 = \frac{240}{629}$	A1	1.2	Or 0.382
7(d)(i)	Probability in (a) would be smaller as more species means more animals overall	E1	2.1b	
7(d)(ii)	(b) would be unchanged as it is conditional on animal being an alligator and the number of male and female alligators is the same in each game	E1	2.1b	
7(d)(iii)	The probability in (c) would be smaller because without replacement the probability gets smaller for each successive animal of each type	E1	2.1b	Or by explicit calculation

7(e)	$0.65 \times 0.5 + 0.2 \times 0.2 + 0.15 \times 0.25$	M1	1.2	
	0.4025	A1	1.2	
	Tree Diagram Method			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(M1)		Tree with at least the 0.65, 0.2, 0.15 as the first layer or 0.5, 0.2 and 0.25 on the fluctuating branch of 2^{nd} layer
	0.4025	(A1)		

7(f)	$P(S W_2 F W_3) \left(=\frac{P(F)}{F}\right)$	$\frac{W_3 SW_2) \times P(SW_2)}{P(FW_3)}$	M1	1.2	Attempt at Bayes theorem seen
			B1	1.2	Use of 0.65 × 0.5
	$=\frac{0.65}{"0.4}$	5 × 0.5 4025"	M1	1.2	Denominator is 'their (e)'
	0.8	07	A1	1.2	Or $\frac{130}{161}$
	Tree Diagram M	ethod			
			(M1)		Tree seen with correct section for "spike" in week 2
	0.65 S 0.3	∕S <u>.5</u> F 0.325 2∕D	(B1)		$0.65 \times 0.5 = 0.325$
	$\leftarrow 0.2$ F \leftarrow	S 0.2 F 0.04 15 D			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		25 025"	(M1)		Denominator is their (e)
	0.807		(A1)		
		Total	16		

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom