Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE
In Statistics (9ST0)
Paper 02: Statistical Inference

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number 69433
Publications Code 9STO_02_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

Total marks

The total number of marks for the paper is 80 .

Mark types

The Edexcel Statistics mark schemes use the following types of marks:

- M Method marks, awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B Unconditional accuracy marks are independent of M marks
- E Explanation marks

NOTE: Marks should not be subdivided.

Abbreviations

These are some of the marking abbreviations that will appear in the mark schemes.

- ft follow through
- PI possibly implied
- cao correct answer only
- cso correct solution only
(There must be no errors in this part of the question)
- awrt answers which round to
- awfw answers which fall within (a given range)
- SC special case
- nms no method shown
- oe or equivalent
- dep dependent (on a given mark or objective)
- dp decimal places
- $s f$ significant figures
- \quad The answer is printed on the paper

Further notes

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through.
- All M marks are 'possibly implied' (PI) unless specifically stated otherwise in the 'Notes’ column.
- After a misread, the subsequent A marks affected are treated as A1ft, but manifestly absurd answers should never be awarded A marks.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- If two solutions are given, each should be marked, and the resultant mark should be the mean of the two marks, rounded down to the nearest integer if needed.

Qu	Scheme	Marks	AO	Notes
	There is significant evidence (at the 5% sig. level) that... ...the median prediction error for the computer model is different from the median prediction error for the mathematical model.	(E1dep)		or ...that the computer simulation is more accurate. Must be in context (at least difference and error/model) and conclusion not definite dep on ts \& cv both correct
1(b)	[The t-test would be unsuitable as...]			
	...the distribution of percentage errors cannot be assumed to be normal ...			or distribution of percentage errors is skew
	...and the sample may be too small for the Central Limit Theorem (or CLT) to apply.			Need some reference to CLT
	(Population) variances may not be equal.			
		E1, E1	$\begin{aligned} & \text { 3.1a, } \\ & \text { 3.1a } \end{aligned}$	E1 for each comment (Max E2) context not required.

Qu	Scheme	Marks	AO	Notes
1(c)	I agree...	E1dep	3.1a	dep on reasonable effort at explanation
because any differences between the cables used for each model would be accounted for.			oe
	...reduces experimental error			oe
	...so that any difference found is due to the model rather than the cable.			
		E1	3.1a	For explanation
	I disagree...	(E1dep)		dep on reasonable effort at explanation
	...because the cables used for each test could become damaged which could have an effect on the following results. or ...that the computer simulation is more accurate.	(E1)		oe
1(d)	Analyse with paired...	E1	3.1a	
	...Wilcoxon signed-rank test.	E1	3.1a	or sign test
	Total	15		

Qu	Scheme	Marks	AO	Notes
2(a)	$\begin{aligned} & \mathrm{H}_{0}: p=0.2 \\ & \mathrm{H}_{1}: p<0.2 \end{aligned}$	B1	1.3	Accept π Do not accept \hat{p} Condone $\mathrm{H}_{0}: p_{\mathrm{I}}=p_{\mathrm{UK}}$ $\mathrm{H}_{1}: p_{\mathrm{I}}<p_{\text {UK }}$ oe well explained in words
	[$X=$ number of students sleeping for less than 5 hours the previous night]			
	$X \sim \mathrm{~B}(40,0.2)$	M1	1.3	PI Clear use of binomial distribution with $n=40$ and any p
	$P(X \leq 6)=0.2859$	A1	1.3	$\begin{aligned} & 0.285 \sim 0.286 \\ & \text { or CR: } X \leq 3 \text { with } \\ & p=0.028 \end{aligned}$
	"0.2859" > 0.05 so do not reject H_{0}	M1	2.1b	PI Comparison of 'their p value' with 0.05 or $6>3$ (CR)
	There is no significant evidence... .that the proportion is smaller in the UK than in India.	A1dep	2.1a	or ...to support Hamish's suspicion. Must be in context and conclusion not definite dep M1A1M1

SC: Use of normal approx. max 3/5 B1M1A0M1A0
Hypotheses, model, comparison of ts with (-) 1.645 or p-value $=0.429$ with 0.05

2(b)	Possible comments (not exhaustive)			
	Only students at Hamish's university used.			
	Only responses for one night.			Might have been a party/exam time so not independent.
	Small sample [so low power test].			
	Students are self-reporting.			
	They might not know how long they slept.			oe
		E1, E1	$\begin{aligned} & \text { 3.1a, } \\ & \text { 3.1a } \end{aligned}$	E1 for each sensible comment (Max E2)
2(c)	Exact binomial method $\begin{aligned} & \mathrm{H}_{0}: p=0.626 \\ & \mathrm{H}_{1}: p \neq 0.626 \end{aligned}$	B1	1.3	For both Accept π for p Condone $\mathrm{H}_{0}: p_{\mathrm{I}}=p_{\mathrm{UK}}$ $\mathrm{H}_{\mathrm{I}}: p_{\mathrm{I}} \neq p_{\mathrm{UK}}$ oe well defined in words
	[$X=$ Number of poor sleepers]			
	$X \sim B(105,0.626)$	M1	1.3	Use of binomial with either $n=105$ or $p=0.626$
	$P(X \geq 84)$	M1	1.3	$\begin{aligned} & \text { or } \mathrm{P}(\mathrm{X} \geq 76)= \\ & 0.026 \text { or } 0.0227 \end{aligned}$
	$=0.00009302$	A1	1.3	$\begin{aligned} & \text { awrt } 9.30 \times 10^{-5} \\ & \text { or } 0.99996 \text { or } 0.99997 \\ & \text { or } C R: X \geq 76,(X \leq 55) \end{aligned}$
	$\begin{aligned} & <0.025 \\ & \text { so reject } \mathrm{H}_{0} \end{aligned}$	M1	2.1b	PI Comparison with 0.025 or $84>76$
	There is significant evidence of a difference between the proportion	E1dep	2.1a	In context, not definite. dep all 4 previous marks.

	of poor sleepers in the UK and in India.		
	Normal approximation method 1		
	$\begin{aligned} & \mathrm{H}_{0}: p=0.626 \\ & \mathrm{H}_{1}: p \neq 0.626 \end{aligned}$	(B1)	For both Accept π for p Condone $\mathrm{H}_{0}: p_{\mathrm{I}}=p_{\mathrm{UK}}$ $\mathrm{H}_{\mathrm{I}}: p_{\mathrm{I}} \neq p_{\mathrm{UK}}$ oe well defined in words
	$z=\frac{0.80-0.626}{\sqrt{\frac{0.626 \times 0.374}{105}}}$	(M1)	PI Use of 0.626 or use of 84 and 65.73 condone use of 83.5
		(M1)	PI Dividing by their appropriate standard deviation.
	$=3.68(49)$	(A1)	awfw 3.5~3.7 or CR: $\bar{X} \geq 75$ (implies previous M1M1 too)
	$\begin{aligned} & " 3.68 ">1.96 \\ & \text { so reject } \mathrm{H}_{0} \end{aligned}$	(M1)	PI Comparison of 'their' ts with 1.96 or $p=0.00011<0.025$ oe or $\hat{p}>0.7185$ required or $\bar{x}>75.45$ required
	There is significant evidence of a difference between the proportion of poor sleepers in the UK and in India.	(E1dep)	In context, not too definite dep all 4 previous marks.
SC Two proportions test B1M1M0A0M1E0 3/6 max $3^{\text {rd }}$ M1 for their ts comparison with 1.96			

2(d)	$[\bar{x}=6.48, s=1.71, n=105]$			
	$6.48 \pm(1.96) \times \frac{1.71}{\sqrt{105}}$	M1	1.3	PI Use of $\sqrt{105}$ or 0.1669
		B1	1.3	$\begin{aligned} & \text { PI } \\ & \text { Using } z=1.96 \\ & \text { or } t_{104}=1.98(3) \end{aligned}$
	CI is ($6.15,6.81$)	A1	1.3	awfw 6.14~6.15
2(e)	This CI for the UK $(6.15,6.81)$ is completely within the 95% CI for India which is $(6.07,6.83) \ldots$	M1ft	2.1b	For correct comparison for both ends could be seen on a number line ft their CI for the UK as long as consistent
	...so there is no significant evidence of a difference in the mean PSQI scores for students in India and the UK.	E1dep	2.1a	oe In context, not too definite. dep previous M1 and correct CI in (d)
	Total	18		

Qu	Scheme	Marks	AO	Notes
3(a)	$p<0.0001$ suggests there is (strong) evidence of a difference between the of pictures of people being active on Instagram and on Flickr	E1	2.1b	Evidence of difference.
		E1	2.1a	Completely correct in context.
3(b)	$d=1.49$ suggests a large effect between difference in proportion of pictures of people posing on Instagram and that on Flickr (proportion of pictures of people posing is greater on Instagram.)	E1	1.3	Large effect or big difference
	$\mathrm{d}=-0.44$ suggests a medium or small effect between difference in proportion of pictures of reptiles on Instagram and that on Flickr (proportion of pictures of reptiles on Flickr is greater).	E1	1.3	Medium/small effect or small difference Do not allow for very small
		E1	2.1a	Context correct for at least one.
3(c)	Possible comments (not exhaustive)			
	Instagram and Flickr have different proportions of pictures posted in these categories.			
	All the differences are 'large', except for in the Reptile category.			Reptiles posted least
	There is a higher proportion of humanbased photos on Instagram.			or Clear difference between the platforms for animal and human based photographs.
	There is a higher proportion of animalbased photos on Flickr.			
	There is a higher proportion of arthropod photos on Flickr.			
		E1, E1	$\begin{aligned} & 2.1 \mathrm{~b} \\ & 2.1 \mathrm{~b} \end{aligned}$	E1 for each sensible comment (max E2)
		E1dep	1.3	Use of non-technical language for non-specialist audience dependent upon a sensible comment.

Qu	Scheme	Marks	AO	Notes	
		Total	8		

| Qu | Scheme | Marks | AO | Notes |
| :--- | :--- | :--- | :--- | :--- |$|$| 4(a) | | |
| :--- | :--- | :--- |

Qu	Scheme				Marks	AO	Notes
		ss	df	ms	Correct table awrt (ignoring total) Scores M1M1M1B1M1		
	Variety	0.460	3	0.153			
	Fertiliser	0.112	2	0.056			
	Error	0.115	6	0.019			
	Total	0.687	11				
					B1	1.3	PI df correct $(3,2,6)$
					M1ft	1.3	PI MS=SS/df for variety or fertiliser
	To compare variety, $F=\frac{\text { their } M S v}{\text { their } M S e}=7.984$ To compare fertiliser concentration, $F=\frac{\text { their } M S f}{\text { their } M S e}=2.913$				M1	1.3	PI At least one of (variety or fertiliser) their MS/Error MS not if negative
					A1	1.3	$\begin{aligned} & \text { awfw } \mathrm{F}=7.8 \sim 8.6 \\ & \text { (or } p=0.0161 \text {) } \\ & \text { or awfw } \mathrm{F}=2.8 \sim 3.2 \\ & \text { (or } p=0.1306 \text {) } \end{aligned}$
	Critical value $F_{6}^{3}(0.05)=4.757$ Critical value $F_{6}^{2}(0.05)=5.143$				B1	1.3	For either awrt 4.76 or awrt 5.14
	" 8 "> "4.757" so reject H_{0} for varieties. $" 2.913 ">" 5.143 "$ so do not reject H_{0} for fertiliser concentration.				M1	2.1b	PI Correct comparisons 'their ts' with either correct cv Either needed. or comparing p-values with 0.05
	Thus there is significant evidence of a difference between mean oat yields for the varieties of oat seedbut there is no significant evidence of a difference between the mean oat				E1dep	2.1a	For both conclusions in context, not too definite. dep previous 3 marks

Qu	Scheme	Marks	AO	Notes
5(a)	$\begin{aligned} & N=\text { No laughter } \\ & F=\text { Fake laughter } \\ & R=\text { Real laughter } \end{aligned}$			
	$\mathrm{H}_{0}: \mu_{F}-\mu_{N}=0$ $\mathrm{H}_{1}: \mu_{F}-\mu_{N}>0$ $\mathrm{H}_{0}: \mu_{R}-\mu_{N}=0$ $\mathrm{H}_{1}: \mu_{R}-\mu_{N}>0$	B1	1.3	oe At least one pair correct $\begin{aligned} & \mathrm{H}_{0}: \mu_{d}=0 \\ & \mathrm{H}_{1}: \mu_{d}>0 \end{aligned}$
	[5\% one-tailed with $v=9$] $\mathrm{cv}=1.83(3)$	B1	1.3	cao or p-values: awrt 0.043 and awrt 0.0033
	$\begin{aligned} & 1.93>1.83 \text { or } 3.51>1.83 \\ & \text { so reject both } \mathrm{H}_{0} \end{aligned}$	M1	2.1b	PI Correct comparison of at least one test value with their critical t-value. Signs consistent. or Correct comparison of at least one p-value with 0.05
	The data does support Sinead's belief.	E1dep	2.1a	oe referring to funniness of jokes with laughter. Not too strong and in context. dep B1M1

Qu	Scheme		Marks	AO	Notes
5(b)	$\mathrm{H}_{0}: \mu_{R}-\mu_{F}=0$ $\mathrm{H}_{1}: \mu_{R}-\mu_{F} \neq 0$		B1	1.3	oe Accept μ_{d}
	Differences:	-0.9	B1	1.2	PI Attempt at differences or negative
		1.3			
		-0.4			
		1.9			
		0.3			
		0.7			
		0.6			
		0.5			
		0.8			
		1.0			
	$\begin{aligned} & \text { mean }=(-) 0.58 \\ & s=0.798(3) \end{aligned}$		B1	1.2	PI Both correct Condone $s=0.757(4)$
	$\text { ts: } t=\frac{(-) 0.58}{\frac{0.798}{\sqrt{10}}}$		M1ft	1.3	PI Numerator may be -ve or $\frac{\bar{a}}{\frac{0.798}{\sqrt{10}}}$
	$=2.297$		A1	1.3	$\begin{aligned} & \text { awrt }(\pm) 2.30 \\ & \text { or } \frac{\bar{d}}{\frac{0.798}{\sqrt{10}}}=2.262 \end{aligned}$
	[two-tailed, $v=9$]				
	$\mathrm{cv}=2.262$		B1	1.3	or $\mathrm{cv}=-2.26$ or p-value $=0.0236$ or p-value $=0.0472$ or $\bar{d}= \pm 0.571$
	$\begin{aligned} & " 2.297 ">" 2.262 " \\ & \text { so reject } \mathrm{H}_{0} \end{aligned}$		M1	2.1b	PI Comparison their ts with the correct cv . or $0.0236<0.025$ or $0.0472<0.05$ or $0.58>0.571$

Qu	Scheme	Marks	AO	Notes
	There is significant evidence of a difference between 'Fake laughter' and 'Real laughter' in terms of the perceived funniness of jokes. (It appears jokes are thought to be funnier with 'Real laughter' than with 'Fake laughter').	E1dep	2.1a	Correct conclusion in context. Dep previous 4 marks.
SC: Use of two independent samples B1B0B0M1A0B1M1A0 Max4/8 M1 ts=awrt(-)1.3 B1 cv= $\pm 2.101 ~ M 1 ~ c o m p a r i n g ~ t h e i r ~ 1.3 ~ w i t h ~ 2.10 ~$				

6(b)	The joint category "definitely use the company again" and "not first experience" make the biggest contribution to χ^{2} at 5.72 (or 5.71)	E1	2.1a	Condone mention of other contributions, but must identify joint category 5.72 or quote numerical justification 12 and 6.1
	This suggests that, far more customers than expected, who have used the company before, would definitely use them again.	E1	2.1a	oe Full explanation in context Comment to include contextualised reference to the direction of the difference between the obs and \exp frequencies
6(c)	Possible sources of bias (Not exhaustive)			
	Only 62 out of 400 (ie only 15.5%) responded to the email. This very large non-response rate could introduce bias.			Comment on low response rate.
	Customers who chose not to give their email address are excluded.			
	Not everyone checks their email.			Comment on use of email. Survey only done by email.
	The categories used for 'Use Again'? are likely to introduce bias as there are two 'positive' responses but only one 'negative' response available.			Comment on two positive choices.
	The customers that responded to the email may be the customers with the strongest opinions.			Idea of customers selfselecting condone volunteer sample
		E1, E1	$\begin{gathered} \text { 3.1a, } \\ \text { 3.1a } \end{gathered}$	
				E1 for each sensible comment (Max E2)
Total		12		

