Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE
In Statistics (9STO)
Paper 03: Statistics in Practice

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022
Question Paper Log Number 69434
Publications Code 9STO_03_2206_MS
All the material in this publication is copyright
© Pearson Education Ltd 2022

General Marking Guidance

Total marks

The total number of marks for the paper is 80 .

Mark types

The Edexcel Statistics mark schemes use the following types of marks:

- M Method marks, awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B Unconditional accuracy marks are independent of M marks
- E Explanation marks

NOTE: Marks should not be subdivided.

Abbreviations

These are some of the marking abbreviations that will appear in the mark schemes.

- ft follow through
- PI possibly implied
- cao correct answer only
- cso correct solution only
(There must be no errors in this part of the question)
- awrt answers which round to
- awfw answers which fall within (a given range)
- SC special case
- nms no method shown
- oe or equivalent
- dep dependent (on a given mark or objective)
- dp decimal places
- sf significant figures
- $\boldsymbol{*} \quad$ The answer is printed on the paper

Further notes

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- All A marks are 'correct answer only' (cao), unless shown, for example, as A1ft to indicate that previous wrong working is to be followed through.
- All M marks are 'possibly implied' (PI) unless specifically stated otherwise in the 'Notes' column.
- After a misread, the subsequent A marks affected are treated as A1ft, but manifestly absurd answers should never be awarded A marks.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- If two solutions are given, each should be marked, and the resultant mark should be the mean of the two marks, rounded down to the nearest integer if needed.

Question	Scheme	Marks	AO	Notes
$\mathbf{1 (a)}$	The group that only receives the standard balance training.	B1	1.1	Accept "the second group"
$\mathbf{1 (b)}$	So that any difference (in outcome) found between the two groups can be more confidently attributed to the video game.		oe Accept "To reduce the likelihood that some factor other than the video game results in a difference (in outcome) between the two groups" or "Reduces experimental error"	
	To avoid the bias that could arise if patients were not assigned randomly.		E1	3.1a
	Do not accept "to make the experiment more fair" or similar.			
	Reference specifically to removing bias.			
$\mathbf{1 (c)}$	Because Giovanni knows which patients are assigned to each group.		Either oe	
	Because the patients know if they are playing the video game or not		B1	1.1
	Either			

Question	Scheme	Marks	AO	Notes
$\mathbf{1 (d)}$	List not exhaustive		Accept "Both groups have better (average) balance at the end of the experiment"	
	Both the control and experimental groups show improvement in their (average Berg balance) scores at the end (T1) of the experiment.		Must specify that this is an improvement on initial (average) scores or balance.	
	Both the control and experimental groups show improvement on their initial (average Berg balance) scores one month after (T2) the experiment.		Accept "The control group's better average balance is not maintained one month after the experiment"	
	The control group's improvement in average (Berg balance) score at the end of the experiment does not remain one month after (T2) the experiment			
	The experimental group's improvement in average (Berg balance) score at the end of the experiment was maintained one month after (T2) the experiment			This is not distinct from comments on the differences in spread or average of the scores at the start of the experiment. (41 vs 45)
	The control and experimental groups have different distributions of (Berg balance) scores at the start (T0) of the experiment.	Accept "The control and experimental groups have similar average scores at the start of the experiment."		
	The experimental group has a higher median balance score than the control group at all stages			
The control group has a slightly lower average (Berg balance) score at the start (T0) of the experiment than the experimental group.				

Question	Scheme	Marks	AO	Notes
1(d) cont.	The experimental group has two outliers			
	The experimental group has a bigger range of (Berg balance) scores at the start (T0) of the experiment than the control group.			
	The experimental group has a smaller range of (Berg balance) scores at the end (T1) of the experiment than the control group.			
	The experimental group has a smaller IQR of (Berg balance) scores at the start (T0) of the experiment than the control group.			
	Control group one month after the experiment (T2) has the same median as the experimental group had at the start of the experiment (T0)			
	The spread decreases in the experimental group from the end of the experiment (T1) to one month after the experiment (T2).			
	Experimental group are positively skewed			
		$\begin{aligned} & \mathrm{E} 1, \mathrm{E} 1, \\ & \mathrm{E} 1, \mathrm{E} 1 \end{aligned}$	$\begin{aligned} & 1.1, \\ & 1.1, \\ & 1.1, \\ & 1.1 \end{aligned}$	One mark for each distinct correct comment up to a maximum of 4 marks Maximum 3 if no context attempted Accept median or average but not mean throughout - penalise only once

Question	Scheme	Marks	AO	Notes
$\mathbf{1 (e)}$	Advantages			oe
	The box and whisker plots clearly show the differences between the distributions (of the Berg balance scores) before and after the therapies.			oe control v experimental or e.g. easy to compare averages
	The box and whisker plots clearly show the differences (of the Berg balance scores) between the distributions of the control and experimental groups.			
	It can show the scores at 3 different times on the same diagram		E1	3.1 a

Question	Scheme	Marks	AO	Notes	
$\mathbf{1 (e) ~ c o n t . ~}$	Disadvantages		oe Specialist knowledge is required to understand box and whisker plots.		
	The meaning of box and whisker plots may need to be explained to a non-specialist audience.		oe Limits the information provided		
	The box and whisker plot only provides 5 statistics.	Doesn't tell us how large the sample was			
	Exact values are difficult to read	E1	3.1a	Any disadvantage	

Question	Scheme	Marks	AO	Notes			
2(a)	$\frac{1}{(13-5)}=0.125$	E1	2.1a	oe May be stated in words: "Total probability/area is one. The base of the rectangle is 8. One divided by 8 is 0.125" Accept "1/8 $=0.125 "$			
2(b)	9 (working) hours	B1	1.2				
2(c)	0	B1	2.1 a	oe "zero"	$	$	B1
:---							
2(d)							
2(e)							

Question	Scheme	Marks	AO	Notes
3(a)	$(\mathrm{n}=22) \mathrm{t}=2.080$	B1	1.3	t-value Condone $\mathrm{z}=1.96$
	$54.8 \pm 2.080\left(\frac{35.4}{\sqrt{22}}\right)$	M1ft	1.3	Formula correct ft on B1
	(39.1, 70.5)	A1	1.3	awfw $\text { 39~39.1, } 70.4 \sim 70.5$
3(b)	The confidence intervals do not overlap.	M1	2.1b	Comparison of candidates CI from (a) with given CI
	So there is significant evidence to support Klazine's belief.	E1dep	2.1b	oe dep M1 Evidence supports Klazine's belief
	Involving a child in preparing their own meal affects what they choose to eat at that meal (this can be seen for salad)	E1dep	2.1a	dep on M1 Response can be more specific, e.g. "children who help prepare their own meal eat more salad" or "children who do not prepare their own meal eat less salad"
				Award E marks independently from one another. May be seen in one sentence. Disregard references to health.

Question	Scheme	Marks	AO	Notes
3(c)	C signifies child prepared with parent D signifies parent prepared alone			Can be the other way around with a negative ts and cv
	$\begin{aligned} & \mathrm{H}_{0}: \mu_{\mathrm{C}}-\mu_{\mathrm{D}}=10 \\ & \mathrm{H}_{1}: \mu_{\mathrm{C}}-\mu_{\mathrm{D}}>10 \end{aligned}$	B1	1.3	oe both, subscripts clearly defined
	$s_{p}^{2}=\frac{(25-1) 50.1^{2}+(22-1) 51.3^{2}}{25+22-2}$	M1	1.3	PI
	$=2567$	A1	1.3	PI awrt 2560~2570 or $s_{p}=\text { awfw } 50.5 \sim 50.7$
	$t s=\frac{(110.5-89.7)-10}{\sqrt{2567\left(\frac{1}{25}+\frac{1}{22}\right)}}$	M1	1.3	PI Numerator or denominator correct (ignoring -10)
		M1dep	1.3	PI Fully correct numerator with candidates $s_{p}{ }^{2}$
	Critical value method: $10+1.679 \times \sqrt{219.344}=34.866$			1.679 scores M1 Formula scores M1dep
	$=0.729$	A1	1.3	ts awfw 0.728~0.730 or 34.9
	$\mathrm{cv}=1.679$ or p-value $=0.235$	B1	1.3	Any of $1.679,0.235$, 20.8 selected for comparison
	($0.729<1.679$, No significant evidence to reject H_{0}) There is insufficient evidence that the children who prepared their meal with a parent ate over 10 grams more cauliflower, on average, than the children who did not.	E1dep	2.1a	oe $0.235>0.05$ or $20.8<34.9$ in context. Must contain element of doubt. dep on whole test correct

| Question | Scheme | Marks | AO | Notes |
| :--- | :--- | :--- | :--- | :--- | \left\lvert\, \(\begin{array}{l}3(d)

\hline\end{array} $$
\begin{array}{l}\text { The (population) variance of the } \\
\text { weight of cauliflower eaten by } \\
\text { children who prepare their meal } \\
\text { with a parent should be very } \\
\text { similar to the (population) } \\
\text { variance of the weight of } \\
\text { cauliflower eaten by children } \\
\text { whose parent prepared their } \\
\text { meal alone. }\end{array}
$$ \quad\right.\) B1 $\left.\begin{array}{l}\text { Variances } \\
\text { equal/similar/close in } \\
\text { context. } \\
\text { Accept "Variance of } \\
\text { cauliflower should } \\
\text { be the same for } \\
\text { children who prepare } \\
\text { and those that don't." }\end{array}\right\}$

| $\mathbf{3 (f)}$ | The width of the confidence
 intervals should decrease. | B1 | 2.1 b | oe
 Confidence intervals
 narrower.
 Condone smaller |
| :--- | :--- | :---: | :---: | :---: | :--- |

Question	Scheme	Marks	AO	Notes
4(a)	$(\sqrt{2.8}=) 1.67$	B1	1.2	awrt 1.67
4(b)	0.222	B1	1.2	awfw 0.222~0.223
4(c)	$\lambda=8.4$	M1	1.2	PI rescaling
	$(1-0.399=) 0.601$	A1	1.2	awfw 0.600~0.602
4(d)	Exponential (distribution)	B1	2.1 b	B1dep
	with parameter 2.8		$\lambda=2.8$ or mean $=1 / 2.8=0.357$ must state that this is the mean Dep on previous B1	
		B1	1.2	Accept Exp(2.8) for both marks
oe				
4(e)	$\left(\frac{1}{2.8}=\right)=\frac{5}{14}=0.357$ (years)			

Question	Scheme	Marks	AO	Notes
4(f)	Use of memoryless property	M1	2.1a	PI by correct working May be stated or demonstrated by candidate clearly disregarding the wind turbine history e.g. "P(X <0.5)" with no conditional probability used.
	$1-e^{-2.8 \times 0.5}$	M1ft	1.2	PI $1-e^{-1.4}$ Accept ft of candidate's λ
	Alternative	A1	1.2	awrt 0.753
	Use of Poisson distribution with λ $=1.4$	(M1)		PI
	$1-P(X=0)$	(M1)		PI $1-0.247$
	0.753	(A1)		awrt 0.753

Question	Scheme	Marks	AO	Notes
4(g)	$\frac{84}{6 \times 5}=2.8$	B1	1.2	oe working Full calculation must be demonstrated. May state in words.
4(h)	A wind turbine may not fail at a constant average rate as older turbines may be more likely to fail.			Challenge to the assumption that failure rate for a wind turbine is constant.
	The failure of a wind turbine may not be a random event because it may be caused by weather.			Challenge to the assumption that wind turbines fail at random.
	The failure of a particular wind turbine may not be independent of the failure of another wind turbine as one may fall onto another.			Challenge to the assumption that wind turbines fail independently.
	Petra's calculation of λ made the assumption that all of the wind turbines fail at the same average rate per year. This might not be true.			Challenge to the assumption that all wind turbines fail at the same rate.
	Petra based her value of 2.8 on a limited amount of data			Challenging Petra's value of 2.8 e.g. When a wind turbine has failed it can't fail again until repaired
	More than one turbine could fail at exactly the same time			
	There would be an upper limit to the number of failures in one year			
		$\begin{gathered} \text { E1, E1, } \\ \text { E1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{~b}, \\ & 3.1 \mathrm{~b}, \\ & 3.1 \mathrm{~b} \end{aligned}$	Any three distinct answers from the above, in context of wind turbine failure. Max E1E0E0 if no context
	Total	14		

Question	Scheme	Marks	AO	Notes
5(a)	(The distribution has an approximate) bell shape	E1	2.1a	oe Accept "(Distribution is) monomodal" or "unimodal" or "One clear peak (in the distribution)"
5(b)	The distribution has a (positive) skew.			Skew or not symmetrical
	Too much of the distribution is in the tails (for it to be a normal distribution).			oe Accept "(distribution/shape) too triangular" or (distribution has) tails (that are) too large" or "(distribution has) high kurtosis"
		E1	2.1a	Either May use calculations that show an equivalent argument but the point being made must be clear.

Question	Scheme	Marks	AO	Notes
$\mathbf{5 (c)}$	$s=P(80<X<100)$ or $t=P(100<X<120)$	M1	1.2	PI oe Clear attempt to find either probability using correct normal distribution.
	$s=0.2789$ or $t=0.3406$	A1	1.2	Either s or t correct s awfw 0.278~0.280 t awfw 0.340~0.342
$250 \times s$ or $250 \times t$	M1ft	1.2	Either PI ft candidate's s or t	
	$u=69.73$ and $v=85.15$ or 85.14	1.2	Both u and v correct u awfw 69.5~70 v awfw 85~85.5 Correct to 1 or more dp	
	A1			
5(d)	They should pool $140<x \leq 160$ with $160<x$ because the expected frequency is less than 5.	E1	1.3	oe Accept "pooling because 1.7 $<5 "$

Question	Scheme	Marks	AO	Notes
5(e)	H0: The normal distribution is a suitable model $\mathrm{H}_{1}:$ The normal distribution is not a suitable model	B1	1.3	oe Hypotheses, both
	$\mathrm{df}=3$ $\mathrm{cv}=7.815$ or p-value $=0.00455$	B1	1.3	cv or awfw -value $=0.004 \sim 0.005$
	$(13.04>7.815$ or 0.00455 <0.05) Reject H_{0}	M1dep	2.1 b	Comparison dep B1
	There is sufficient evidence to conclude that the normal distribution is not a suitable model for film running times.	E1dep	2.1 a	Correct conclusion in context dep B1M1

Question	Scheme	Marks	AO	Notes
6(a)	(Sign test)	B1	2.1b	PI sign test clearly used or stated Implied by use of binomial e.g. $\mathrm{P}(X \leq 4)$
	[$X=$ number of rounds with more blue winners than red winners] $X \sim \mathrm{~B}(20,0.5)$	B1	2.1a	PI use of $\mathrm{B}(20,0.5)$ Condone $\mathrm{n}=21$
	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{p}=0.5 \\ & \mathrm{H}_{1}: \mathrm{p} \neq 0.5 \end{aligned}$	B1	1.3	oe Condone 1-tail
	$\mathrm{P}(X \leq 4)$	M1	1.3	oe PI Attempt to calculate p-value Accept $\mathrm{P}(X \geq 16)$ Or Attempt to find critical region
	$=0.00591$ or Critical region is $X \leq 5$ as $\mathrm{p}=0.021$	A1	1.3	awrt 0.0059
	$\begin{aligned} & 0.00591<0.025 \text { or } 4<5) \\ & \text { Reject } \mathrm{H}_{0} \end{aligned}$	M1dep	2.1b	Comparison Condone compared to 0.05 if 1-tailed hypotheses Dep M1
	There is significant evidence that wearing red affects the success of (male) combatants.	E1dep	2.1a	Dep A1M1 Condone "There appears to be an advantage of wearing red (over blue) for the combatants."

Question	Scheme	Marks	AO	Notes
6(b)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{d}=0 \\ & \mathrm{H}_{1}: \mu_{d} \neq 0 \end{aligned}$	B1	1.3	oe Hypotheses re: population means e.g. $\mu_{\text {red }}=\mu_{\text {not red }}$ Condone 1-tail
	$d=0.5,0.5,1,0.5,1.5$	M1	1.3	PI Attempt at differences (signs may be all negative)
	$\bar{d}=0.8 \quad s_{d}=0.4472$	A1ft	1.3	PI mean and sd of their differences
	$t s=\frac{0.8}{\left(\frac{0.4472}{\sqrt{5}}\right)}$	M1	1.3	PI calculation of ts may be negative Allow their mean/sd or $0 \pm 2.776 \times \frac{0.4472}{\sqrt{5}}$ which scores the B1 for cv
	$t=4.00$	A1	1.3	$\begin{aligned} & \text { awrt } 4.00 \\ & \text { or } \frac{\bar{d}}{\frac{0.472}{\sqrt{5}}}=2.776 \end{aligned}$
	$\begin{aligned} & (\mathrm{df}=4) \\ & \mathrm{cv}=2.776 \end{aligned}$	B1	1.3	Either correct cv (ignore sign) or p-value or p-value $=0.0161$ awfw 0.0159~0.0162 or $\bar{d}= \pm 0.555$ Condone 1-tail $\mathrm{cv}=2.132$ if 1-tailed hypotheses
	$4>2.776$ Reject H_{0}.	M1dep	2.1b	PI or $-4<-2.776$ or $0.0161<0.025$ or $0.8>0.555$ dep A1B1

				Correct comparison
	There is evidence at the 5\% significance level that the success of a football team is affected by wearing red; (teams appear to do better when wearing red.)	E1dep	2.1a	oe full explanation in context required for E1 mark dep A1B1
SC Two sample t test max B1M0A0M1A0B1M1E0 $\bar{d}_{\text {red }}=0.4, \bar{d}_{\text {not } \text { red }}=-0.4$ $s_{p}=0.65$ $\mathrm{t}=1.94$				

Question	Scheme	Marks	AO	Notes
6(c)	Possible criticisms (not exhaustive)			
	Both (a) and (b) have very small samples			oe Or either sample small
	There is no evidence of randomisation in (b).			oe Or neither sample was selected at random. "Football teams weren't randomly assigned to wear red or not red"
	Fights in (a) not independent as same fighter may fight in red and in blue			
	Additional factors not taken into account e.g. relative strength of teams, ability of combatant			Blocking factors could be mentioned here
	(a) only considers 2004			
	(b) only considers Europe			
	All combat rounds not equally weighted			
	(a) only tests red against blue...			
	...whereas (b) tests against many different colours, so the two tests are not providing consistent conclusions.			
	The t-test [in (b)] may not be appropriate because the (differences) may not be normally distributed.			oe
		$\begin{aligned} & \text { E1, E1, } \\ & \text { E1, E1 } \end{aligned}$	$\begin{aligned} & \text { 3.1a, } \\ & 3.1 \mathrm{a}, \\ & 3.1 \mathrm{a}, \\ & 3.1 \mathrm{a}, \end{aligned}$	Any four distinct correct comments.

Question	Scheme	Marks	AO	Notes
6(d)	The data in (a) and (b) is only about men's sport (so the results may not be applicable to women's sport).			oe Accept "all data only about men"
	The tests were about football and combat sports so results might not extend to netball			
	In both (a) and (b) it was found that the players wearing red did better (so it may be helpful to Charlottes team also).			oe Accept "tests show playing in red helps"
	Both of the studies in (a) and (b) were very small (so it might not be worth paying for red kit without further evidence).			oe reference to limited size of evidence Accept "sample sizes are too small"
	Neither study was conclusive that the effect found was due to wearing red. Effects could have been due to colours other than red (so it might not be worth paying for new kit without further evidence).			oe reference to interpretation of evidence Accept "no evidence found of causation/causal effect of red on success"
	The assumptions of the tests used in this research may not be true(so Charlotte shouldn't spend money on new kit without better evidence).			oe
	The tests in (a) and (b) were two tailed, so we only have evidence that red is a difference not an improvement			
		E1, E1	$\begin{aligned} & 3.1 \mathrm{~b}, \\ & 3.1 \mathrm{~b} \end{aligned}$	Any two distinct comments

SC if concluded that there was no difference in (a) or (b) may earn one mark for a relevant comment

