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Answer all eight questions.

Show clearly the full development of your answers.

Answers should be given to three significant figures unless otherwise stated.

1 (a) The gradient of a curve is given by 

 dy  1
 dx =

 4 + x2

  The point (1, 7) lies on the curve.

  Find the equation of the curve. [5]

 (b) Table 1 below shows the coordinates (x, y) of five points on the curve

y = (1 + cos x)2

  where x is in radians.

Table 1

x 0 0.5 1 1.5 2

y 4 3.525 a 1.146 b

  (i) Find the values of a and b.  [2]

  (ii) Use the Trapezium Rule with 5 ordinates to find an estimate of

 2

 (1 + cos x)2 dx [3] ∫0



3 [Turn over9849

2 Initially the number of fish in a lake is 625 000
 The population of fish in the lake can be modelled by the recurrence relation

un+1 = 1.04un – d       u0 = 625 000

 In this relation un is the number of fish in the lake after n years and d is the number of fish 
which are caught each year.

 (i) Given that d = 18 750, calculate u1, u2 and u3 and comment briefly on your results. [3]

 (ii) Given instead that d = 125 000 and u5 = 83 367.7, briefly explain what happens to the  
fish population during the sixth year. [1]

 (iii) Find the value of d which would leave the fish population unchanged each year. [2]

3 (a) Solve the equation

1 + sin θ + cos2 θ – 2sin2 θ = 0

  where –180° < θ < 180° [5]

 (b) The graph of the curve

1
y = x3 + 4x

  is shown in Fig. 1 below.

y

x

Fig. 1

  Find the area of the region bounded by the curve, the lines x = 1 and x = 8 and 
  the x-axis.  [4]
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4 Patrick is going to walk his dog on a path in his local park.
 The path runs due north.
 When he is at the start of the path he sees an oak tree on a bearing of 040°

 Patrick walks 200 m due north along the path.
 The bearing of the oak tree is now 070°

 (i) Find, to the nearest metre, the shortest distance of the oak tree from the path. [6]

 Patrick walks a further 200 m due north along the path.

 (ii) Find the distance Patrick now is from the oak tree. [3]

5  Fig. 2 below shows the logo for an ice-cream parlour.

C
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Fig. 2

 O is the centre of a circle of radius 4 cm.
 AB and AC are tangents to the circle. 

4π Angle AOC =  9   radians.

 (i) Find the perimeter of the logo.  [5]

 (ii) Find the area of the logo.  [4]
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6 (a) Evaluate

 2 log2 a + log4 4a2 – 3 log2 2a [6]

 (b) Given  that

3(22x) + 2(2x) – 1 = 0

  find x. [5]

7 In the binomial expansion, in ascending powers of x, of  

  1 + x  n
 ( k ) k ≠ 0      n ≠ 0

 the coefficients of x and x2 are equal and non-zero.

 (i) Form an equation in n and k. [4]

 The coefficient of x4 is four times the coefficient of  x5 

 (ii) Show that   4n = 5k + 16 [4]

 (iii) Hence find n and k. [2]

8 A circle has centre (a, b) and radius r.
 The centre of this circle lies on the line y = 2

 (i) Write down the value of b. [1]

 The circle passes through the points (1, 5) and (–6, 6).

 (ii) Find the equation of this circle.  [10]

THIS IS THE END OF THE QUESTION PAPER
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