

Rewarding Learning

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2017

Mathematics

Assessment Unit C1 assessing Module C1: AS Core Mathematics 1

Centre Number

Candidate Number

AMC11

[AMC11] WEDNESDAY 17 MAY, MORNING

TIME

1 hour 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer all eight questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in black ink only. Do not write with a gel pen.

Questions which require drawing or sketching should be completed using an H.B. pencil. All working should be clearly shown in the spaces provided. Marks may be awarded for partially correct solutions. **Answers without working may not gain full credit**. Answers should be given to three significant figures unless otherwise stated.

You are not permitted to use any calculating aid in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A copy of the Mathematical Formulae and Tables booklet is provided.

Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log_e z$ 10435

24AMC1101

BLANK PAGE

DO NOT WRITE ON THIS PAGE

24AMC1102

1

$\frac{3x^2-}{x+1}$	$\frac{12}{4} \times \frac{23}{4}$	$\frac{x^2+7x-4}{3x+6}$		[4]
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
				•••••
			ſſ	Furn a

24AMC1103

24AMC1104

	3x + 4y $x - 2y + 4x + y - 4x + y - 4x + y - 4x + y - 4y + 4y + y - 4y + y + 4y + 4$	-z = 6-3z = 12-2z = 11 [6]
	••••••	
	••••••	
	••••••	
	••••••	
0435		

[lurn over

24AMC1105

20 7 Learning G CC. Ð CC. Ð a Ð a Ð Ca. 20 a 200 G. Ð CC. 20 J Lawrithy a D C. 20 Learning Ca. Ð CC. D a Ð C. a

2 Fig. 1 below shows a sketch of the graph of the function y = f(x).

Point A has coordinates (2, 4). Each sketch below shows a single transformation of the function y = f(x).

For each sketch, use function notation to describe the transformations shown.

24AMC1106

24AMC1107

y Learning Research 2 Loaming CC. 20 7 Learning Resards 20 7 Learning CC. 20 2 Learning CC. 200 Rewards Rowerda 200 J Learning CC. 200 7 Learning CC. DD 7 Learning CC. Reserved 20 J Learning CC. 200 7 Learning CC. CC. 2 2 Learning CC. 200 7 Learning CC. 20 7 Learning CC. C. 2 Leaning Resources 7 Leaning C.

3 A piece of timber, in the shape of a trapezium, is shown in **Fig. 2** below.

Fig. 2

The parallel sides of the trapezium have lengths $(6 - 4\sqrt{2})$ metres and $\sqrt{8}$ metres. The area of the piece of timber is 7 m^2		
Find the exact value of h , leaving your answer in the form $a + a$	\sqrt{b} [6]	

[Turn over

24AMC1109

4	Fig. 3 below shows the rhombus ABCD.
	D V L L L L L L L L L L L L L
	Fig. 3
	Point A has coordinates (-2, 1). Point C has coordinates (3, 11).
	Find the equation of the line BD. Leave your answer in the form $ax + by + c = 0$, where <i>a</i> , <i>b</i> and <i>c</i> are integers. [6]
10435	

y Learning CC Reserved

De pi Leavity De anardo De pi Leavity Roardo De pi Leavity

Rewards

J. Learning Description J. Learning J. Learning Description Researching

J. Learning D. Commission J. Learning J. Learning D. Reservice

2 Learning 2 Lear

Texastrito 7 Levendry Romanter

CC.

G

24AMC1110

10435	[lurn over

24AMC1111

Find the value of <i>a</i> .	

y Learning CC Reserved 20 J Loaming CC. 20 7 Learning Reserved 20 7 Lawriting Reward Reserved 2 Learning Research 200 J. Levaminy Rosertin Reserved Rosertin 2 Learning Rosertin J. Lawring J. Lawring D. Lawring J. Lawring J. Lawring J. Lawring J. Lawring Reserved 7 Learning Reserved Reserved CC. CC. Research Rowardin Roards Parties Parties Parties Parties G

24AMC1112

(b) Solve

3(2x+1) - (x+3)(x-1) < 0	[7]
 	•••••••••••••••••••••••••••••••••••••••
 	•••••••
 	······
 	•••••••
 	•••••••
 	•••••••
 	•••••••
 	•••••••
 	•••••••
 	••••••
 	·····
 	······
	[Turn ove

24AMC1113

6	Find the equation of the tangent to the curve	
	$y = 4\sqrt{x} - \frac{x^2}{2} \qquad (x > 0)$	
	at the point where the curve crosses the <i>x</i> -axis. [8	;]
		••
		•••
		••
		•••
		••
		•••
		••
		••
		••
	·····	•••
		••
		•••
		••
		••
		•••
10435		

24AMC1114

24AMC1115

,	
,	

a)	Solve the simultaneous equations		
	$8^x \times 16^{y-1} = \sqrt{32}$		
	4x + 2y = 7		
		••••	
		••••	
••			
		••••	
••			
		••••	
		••••	
•		•••	
•••			
•••••		• • • •	
		••••	
		••••	
		• • • •	
		••••	
		•••	
		•••	
		•••	
•		••••	
•••		•••	
		••••	
		•••	
		••••	

24AMC1116

•••••••
[Turn over

24AMC1117

and <i>y</i> =	$\frac{1}{2-x}$
touch each other.	
· · · · · · · · · · · · · · · · · · ·	
	•••••••••••••••••••••••••••••••••••••••

24AMC1118

[Turn over

24AMC1119

20 7 Learning a 20 y Loaming CC. Ð a Ð a Ð a Ð C. D a 200 G. Ð a 20 J Lawrithy a Ð Ca. Deaming C. CC. CC. Passardin 2 Leominy 7 Leominy 7 Leominy 7 Leominy CC. 200 7 Learning Reserve Ð a

[4]

8 Fig. 4 below shows the design of a hollow metal casing.

The casing consists of a circular base, open cylinder and open hemisphere, all with common radius.

The cylinder has radius r metres and height h metres.

The casing has volume $\frac{\pi}{3}$ m³

[Volume of sphere = $\frac{4}{3}\pi r^3$, Surface area of sphere = $4\pi r^2$]

(i) Show that

$$h = \frac{1 - 2r^3}{3r^2}$$

10435

24AMC1120

(ii) Hence show that S, the total surface area of the casing, can be expressed as

24AMC1121

24AMC1122

The	e total surface area of the casing
	$S = \frac{5\pi r^2}{3} + \frac{2\pi}{3r}$
is to	b be coated with expensive heat-resistant paint.
(iii)	Using calculus, find the value of r for which the total surface area is kept to a minimum.

••••••	
••••••	
••••••	
•••••••••••••••••••••••••••••••••••••••	
••••••	

DO NOT WRITE ON THIS PAGE

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
Total Marks		
	-	

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

10435/7

24AMC1124