AQA Qualifications

GCSE
 Mathematics

Unit 3 43603F
Mark scheme
43603F
June 2015

Version 1.0 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

If a student uses a method which is not explicitly covered by the mark scheme the same principles of marking should be applied. Credit should be given to any valid methods. Examiners should seek advice from their senior examiner if in any doubt.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B Marks awarded independent of method.
Q
ft

SC

Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent.
eg, accept 0.5 as well as $\frac{1}{2}$
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between a and b inclusive.
$3.14 \ldots \quad$ Accept answers which begin 3.14 eg 3.14, 3.142, 3.149.
Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

Work not replaced

Erased or crossed out work that is still legible should be marked.

Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}(\mathbf{a})$ 50 B1 | | |

| Mark above 250 and below 275 in area | | |
| :--- | :--- | :--- | :--- |
| indicated | | |
| 1(b) | Any clear indication | B1 |
| | Calculation shown and answer is not 260 | B0 |

1(c)	Any equivalent percentage $\begin{aligned} & \text { or } \frac{80}{100} \times 500 \\ & \text { or } 0.8 \times 500 \end{aligned}$	M1	$\begin{aligned} & \text { eg } \\ & 1 \% \text { is } 5(\mathrm{ml}) \\ & 10 \% \text { is } 50(\mathrm{ml}) \\ & 20 \% \text { is } 100(\mathrm{ml}) \\ & 50 \% \text { is } 250(\mathrm{ml}) \\ & \text { oe } \\ & \mathrm{eg} \quad 5 \times 80 \end{aligned}$
	400	A1	

Q	Answer	Mark		Comments
2(a)	4.5 or $4 \frac{1}{2}$	B1	oe	
	Additional Guidance			
	Ignore additional units on the answer line			

2(b)	Alternative method 1		
	Works out any area	M1	$\begin{aligned} & \text { eg } \\ & 4 \times \text { their } 4.5 \\ & 7 \times 7 \\ & 7(\times 1) \\ & 9 \times 9 \\ & 5 \times 3 \end{aligned}$
	$4 \times \text { their } 4.5+7+6$ or $7 \times 7-4 \times$ their 4.5	M1dep	oe
	31	A1ft	ft their 4.5 SC2 for 30 or 32 as final answer
	Alternative method 2		
	Attempt to count squares	M1	eg Vertical or horizontal rectangle $=7$ or realise there are four triangles ($4 \times$ their 4.5) or 18 or numbering seen or 6 or 25
	$25+6$	M1dep	oe
	31	A1ft	ft their 4.5 SC2 for 30 or 32 as final answer

$\mathbf{3 (b)}$	Dan	B1ft	ft their fastest time (lowest value)	
	Additional Guidance			B1ft
	Dan or fastest time (lowest value)			

Q	Answer	Mark	Comments
5(a)	3 kg	B1	
5(b)	12 kg	B1	
6(a)	(Faces) 5	B1	
	(Edges) 9	B1	
	(Vertices) 6	B1	

Q	Answer	Mark	Comments	
6(b)	Cannot tell and valid explanation	B2	eg Don't know if length too much B1 for cannot tell or for any valid statement	
	Additional Guidance			
	All comments below are for "Cannot tell", Deduct 1 mark for "Yes" or "No" Assume referring to prism unless clearly otherwise			
	Reference to measurements of prism only			B2
	Reference to not knowing measurements of cube			B1
	The prism may be very wide or very tall and cannot fit inside the cube.			B2
	We need to know the size/dimensions of the prism.			B2
	They are not the same shape so might have different height.			B2
	Cross section of cube $=\sqrt[3]{125}=5$. Cross section of prism $=\sqrt[3]{45}=3.4$. The length of the prism is unknown.			B2
	Height of prism is not given.			B2
	No specific measurements, width could be larger than length or other way round.			B2
	You don't know the area of the end of the prism, so you don't know if the prism will fit in.			B2
	You don't know the area of the end of the cube, so you don't know if the prism will fit in.			B1
	They are not the same shape or similar so you do not know.			B1
	No measurements are given for either shape.			B1
	Cube may not be long in depth as the cube and from the volume we do not know the depth.			B1
	The volume is how much inside, you do not know whether it will fit or not.			B1
	There is no cube to judge it by.			B1
	Calculations involving π, giving radius (cube) $=6.3$ and r (prism) $=3.5$ but then, don't know size or measurements of cube or prism.			B1
	Don't know the dimensions of the cube and if it is long enough for the prism to fit in.			B1

Q	Answer	Mark	Comments
7	$B(12,5)$	B1	
	C ($6,-5$)	B1	
	$D(12,-5)$	B1ft	ft their 12 from B and their -5 from C

8(a)	3×15 or 45	M1	
	135	A1	

8(b)	$180-84-49$	M1	oe eg $96-49$ or $131-84$
	47	A1	
	Additional Guidance		
	133		M0A0

\mathbf{Q}	Answer	Mark	Comments

8(c)	Alternative method 1		
	$26+15+190$ or 231	M1	360-190-26-15
	129	A1	
	Alternative method 2		
	$180-10-15 \text { or } 155$ or 25	M1	$\begin{aligned} & 180-26-25 \\ & \text { or } 155-26 \end{aligned}$
	129	A1	
	Alternative method 3		
	180-26-15 or 139 and 10 seen	M1	$\begin{aligned} & 180-41-10 \\ & \text { or } 139-10 \end{aligned}$
	129	A1	

9 (b)	7×4 or 28 seen	M1	oe
	14×4 or 7×8	M1	oe
	56	A1	SC1 63

$\mathbf{1 0 (b)}$	Extends graph to at least $[(70,94),(70,103)]$	B1	
	Correct reading for their graph	B1ft	tolerance ± 1

Q	Answer	Mark	Comments
11(a)		B2	B1 for 1 or 2 correct

11(b)

Q	Answer	Mark	Comments	
12	$5 x+5 x+3 x+3 x$ or $16 x$ or $5+5+3+3$ or 16	M1	oe	
	$\begin{aligned} & 5 \times 2 x \text { or } 10 x \\ & \text { or } 5 \times 2 \text { or } 10 \end{aligned}$	M1	oe	
	16x: $10 x$ or 16 : 10	A1	oe$\begin{aligned} & \text { eg } 8 x: 5 x \\ & 1.6: 1 \end{aligned}$	
	$8: 5$	A1ft	Dependent on at least M1 $\text { SC3 } 5: 8$ $\operatorname{SC2} 5 x: 8 x$	
	Additional Guidance			
	10:16 oe			M1M1A0A0
	16x:12x 4:3			M1M0A0A1ft

13	$12 \times 4 \times 9$	M1	$\begin{aligned} & 0.12 \times 0.04 \times 0.09 \\ & 120 \times 90 \times 40 \end{aligned}$	
	432	A1	$\begin{aligned} & 0.000432 \\ & 432000 \end{aligned}$	
	cm^{3}	B1	$\begin{aligned} & 0.000432 \mathrm{~m}^{3} \\ & 432000 \mathrm{~mm}^{3} \end{aligned}$	
	Additional Guidance			
	432^{3} (Assume ${ }^{3}$ is their units)			M1A1B0
	$12 \times 4 \times 9=442 \mathrm{~cm}^{3}$			M1A0B1
	$12+4+9=25 \mathrm{~cm}^{3}$			M0A0B1

Q	Answer	Mark	Comments
$\mathbf{1 4 6 (a)}$	$\pi \times 0.7$ or $2 \times \pi \times 0.35$ or 2.19	M1	
	$[2.198,2.2]$	A1	Accept 0.7π

16(b)	Consistent units seen or implied	B1	eg 1600 or [0.002 198, 0.002 2] seen	
	their $1600 \div$ their [2.198, 2.2]	M1	oe Units need not be consistent	
	727.(...)	A1		
	727	Q1ft	Strand (i) Rounding down th	answer
	Additional Guidance			
	$160 \div 0.7 \pi=72.8$ so 72			B0M1A0Q1ft

Q	Answer	Mark	Comments
$4 x-5=15$ M1 $4 \times 5-5=15$ or $4 \times 5=20$ $4 x=15+5$ or 4x $=20$ M1dep oe 5 Q1 Strand (ii) SC2 Answer 5 without algebra shown			

17(b)	$5 y-7=y+3$	M1		
	$\begin{aligned} & 5 y-y=3+7 \\ & \text { or } 4 y=10 \end{aligned}$	M1	oe	
	$(y=) 2.5$	A1		
	their $2.5+3$ or $5 \times$ their $2.5-7$ or 5.5 or 5.5×15	M1	oe ft their y if clearly shown	
	82.5	A1		
	Additional Guidance			
	$4 \times 2.5=10,2.5+3$ embedded value for y			M1M1A1M1A0

