

A-LEVEL Mathematics

Statistics 1B – MS1B Mark scheme

6360 June 2015

Version/Stage: 1.0: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
$\sqrt{10}$ or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS1B

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks
- **GN3** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks.
- **GN4** Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown
- **GN5** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 11/30 given as 11:30 or 11:19
- **GN6** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00524 as 5.24×10^{-3})

Q	Solution	Marks	Total	Comments	
<u> </u>	Solution	1 1121 N 3	10141		
(a)	Using summary data with shown method:				
	$r_{xy} = \frac{3629670}{\sqrt{76581640 \times 694250}}$	M1		Used; accept (all 3 values) ÷ 10 Can be implied by a correct answer	
	= <u>0.49 to 0.5</u>	A1		AWFW (0.497791)	
	Using summary data without shown method or using raw data with or without shown method:				
	$r_{xy} = 0.49 \text{ to } 0.5$ $r_{xy} = 0.4 \text{ to } 0.6$	(B2) (B1)	2	AWFW AWFW	
(b)	Moderate/some positive (linear) correlation	Bdep1		Dependent on $0.4 \le r_{xy} \le 0.6$ OE; must qualify strength and state positive	
	between				
	gas and electricity consumptions	B1	2	Providing $-1 < r_{xy} < +1$ OE; must be in context	
Notes	 Only accept phrases stated; ignore additional comments unless contradictory Use of any of the following terms (even in conjunction with moderate/some): "strong or high or big or good or low or little or small or weak or slight or medium or average or reasonable or pretty" ⇒ Bdep0 Accept "relationship/association/link" but not "trend" instead of "correlation" As gas consumption increases then electricity consumption increases ⇒ Bdep0 B1 Do not accept "between x and y" or "between kWh" or "between consumptions" or "between gas and electricity" without further clarification 				
		Total	4		

Q	Solution	Marks	Total	Comments	
2					
(a)	Mid-points (<i>d</i>): 65.5 66.5 67.5 68.5 69.5 70.5 71.5	M1		At least four seen or implied (only) from $\sum fd = 4095$ or mean = 68.2 to 68.3 AWFW or mean = 68.5 CAO	
	Mean = 68.2 to 68.3	A1		AWFW (68.25)	
	or Var(n) = 2.42 Var(n-1) = 2.46 or	B2		AWRT (2.42083) $(\sum fd^2 = 279629)$ (2.46186)	
	Var(<i>n</i>) or Var(<i>n</i> -1) = $2.4 \text{ to } 2.5$	(B1)	4	AWFW	
Notes	1 Value of variance stated as 1.55^2 to 1.57^2 and not evaluated $\Rightarrow B1$ 2 Value of variance or standard deviation stated as 1.55 to $1.57 \Rightarrow B0$ 3 If, and only if, M0 A0 B0, then award M1 for seen attempt at $\sum f \times (d/LCB/UCB) \div 60$ or $(4095/4065/4125) \div 60$				
(b)	Mean = $\frac{(68.2 \text{ to } 68.3)}{25.4}$ = 2.68 to 2.69	B1		AWFW (2.68701)	
	Var(n) or Var(n-1) = $\frac{(2.4 \text{ to } 2.5)}{25.4^2}$ = <u>0.0037 to 0.0039</u>	B1	2	AWFW (0.0037523 or 0.0038159) Accept (3.7 to 3.9) × 10 ⁻³ (see GN6)	
		T -4 1			
		Total	6		

Q 3 (a)	Solution Solution E Total Dep OT 0.16 0.05 0.08(0) Dep OT 0.06 0.09 0.05 0.2(0)	B2		In (b) & (c), accept any equivalent fractional answer with den ≤ 100 or the equivalent percentage answer with %- sign (see GN4)
(a)	E OT L Total Dep OT 0.16 0.56 0.08 0.8(0) L 0.06 0.09 0.05 0.2(0)	B2		
	Dep L 0.06 0.09 0.05 0.2(0)			All 6 correct CAO
	Γ_{0} (Γ_{0} + $0.022 + 0.65 + 0.13 + 0.00 + 0.00 + 0.001$	(B1)		Any 3 of 6 correct CAO
	Total 0.22 0.65 0.13 1.00		2	
(b) (i)	$P(OT_D \cap OT_A) = $ <u>0.56</u>	B1	(1)	CAO/OE; even 0.56/1
(ii)	$P(L_D) = $ <u>0.2</u>	B1	(1)	CAO/OE; even 0.2/1
(c)(i) _	0.05		2	$(a^{2}a 0.05)/(a^{2}a (b)(i))$
(C)(I) P	$P(L_A L_D) = \frac{0.05}{0.2} =$	M1		(c's 0.05)/(c's (b)(ii)) Can be implied by a correct answer
	<u>0.25</u>	A1	(2)	CAO/OE; not 0.25/1
	$\frac{P(L'_{A} OT_{D}) =}{0.16 + 0.56} \text{or} \frac{0.8 - 0.08}{1 - 0.2} \text{or} \frac{0.72}{0.8}$	B2		Can be implied by a correct answer
	0	(B1)		
	= <u>0.9</u>	B1	(3)	CAO/OE; not 0.9/1
(d)			5	
	$P(E_A \cap OT_A \cap L_A \mid OT_D) =$			
	$\frac{0.16}{0.8} \times \frac{0.56}{0.8} \times \frac{0.08}{0.8} \text{or} 0.2 \ \times \ 0.7 \ \times \ 0.1$	M2		All three correct (equivalent) fractions or decimals multiplied
	0.8 0.8 0.8	(M1)		At least one correct (equivalent) fraction or decimal
	× (3! or 6)	m1		Dependent on M2
	= <u>0.084</u>	A1	4	CAO
	Do not penalise the correct answer quoted to more than Answers given as 84/1000 or 42/500 or 21/250 or 8.4%			
SCs 1	Answers of 0.014 or 0.042 (CAO/OE) even without work $(0.16 \times 0.56 \times 0.08) \Rightarrow M1 \text{ m0 A0}$ (ignore any addition	$ing \Rightarrow M^{\prime}$	2 mo A0	
	$3 \left(\frac{0.16}{1} \times \frac{0.56}{1} \times \frac{0.08}{1}\right) \Rightarrow M1 \text{ but } \left(\frac{0.16}{p_1} \times \frac{0.56}{p_2} \times \frac{0.08}{p_3}\right) \Rightarrow M1$			$p_i \neq 0.8$)
		Total	13	

Q	Solution	Marks	Total	Comments
4 (a)	Scatter diagram: 4 points 2 or 3 points	B2 (B1)	2	Within red box on overlay (Ignore any additional points or any labelling of points)
(b) (i)	$b \text{ (gradient/slope)} = \underbrace{0.4 \text{ to } 0.41}_{b \text{ (gradient/slope)}} = \underbrace{0.35 \text{ to } 0.45}_{c}$	B2 (B1)		AWFW (0.40517) AWFW
	$a \text{ (intercept)} = \underline{1.2 \text{ to } 1.4}\\a \text{ (intercept)} = \underline{0.45 \text{ to } 2.35}$	B2 (B1)		For answers as fractions, see Note 7 AWFW (1.30186) AWFW
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ or	(M1)		209 4455 99 & 2077.1 (all 4 attempted) $(\sum y^2 = 937.02)$
	Attempt at S_{xx} & S_{xy}			484 & 196.1 (both attempted) $(S_{yy} = 82.02)$
	Attempt at substitution into correct corresponding formula for b b = 0.40 to 0.41 $a = 1.2$ to 1.4	(m1) (A1 A1)		AWFW $(\overline{x} = 19 \& \overline{y} = 9)$
Notes	 Treat rounding of correct, but not of incorrect, answers as 13 Award 4 marks for y = (1.2 to 1.4) + (0.4 to 0.41)x or 14 Values of a and b interchanged and equation y = ax + b Values of a and b interchanged and equation y = a + b Values are not identified or simply b/a = # and a/b = # for example, as identification, [b = #, a = # with y = [slope/gradient(b) = #, intercept(a) = #] Answers in fractions can score at most B1 B1 or M1 m1 Some/all of marks can be scored in (b)(ii), (c) & (d)(i), eve be recouped by subsequent working in (b)(ii), (c) or (d)(i) 	for $(1.2 \text{ to } 1)$ by used for d a used for d a, then 0.35 a + bx but	rawing line rawing line to $0.45 \Rightarrow$ no substitut	$\Rightarrow \max \text{ of } 4 \text{ marks}$ $\Rightarrow 0 \text{ marks}$ B1 and 0.45 to 2.35 $\Rightarrow B1 \text{ but accept,}$ tion for b & a] or
	Scatter diagramlineLine must be (approximately) straight; not dog leg, curve or wavy	B2	(2)	From at least $x = 8$ to $x = 30$ (allow a tolerance of 2 squares (ie 4 mm) on line length) and within red tolerance lines on overlay, even if drawn by eye
Notes	1 If, and only if, B0, then award M1 for seen use of an equ 2 If, and only if, B0, then award M0 for points or line mark		least two p er diagram	
	Parts (a) & (b)(i)	Total	6 8	

Q	Solution	Marks	Total	Comments
4	Continued	IVIUI IS	Iotui	
-	Parts (a) & (b)(i)	Total	8	
(b)				
(ii)	<i>b</i> : each/every/one/an additional tile takes			
	or increase per tile is	B1		
	(on average) b hours/60b mins	BF1		F on b providing $0.35 \le b \le 0.45$
				and correct units are stated
		<u> </u>	(2)	
Notes	1 To score any marks, an explanation must indicate change in 2 Reference only to correlation \Rightarrow B0 BF0	n x affecting	change in y	y, not change in y affecting change in x
SC	1 As <i>x</i> /number of tiles increases then <i>y</i> /time increases by <i>k</i>	0/60b (OE;	value of b ($0.35 \le b \le 0.45$) must be stated but context
50	and/or units are not required) \Rightarrow B1		`	,
	<i>a</i> : time to replace no/zero tiles,			OE; in context
	start-up time, minimum time, time for travelling, preparation,	BF1		Reference to the value of a is not
	erecting ladders, obtaining materials, etc			required F on <i>a</i> providing $a > 0$
	electing ladders, obtaining materials, etc		(1)	1' on u providing $u > 0$
			3	
			-	
(c)				AWFW (7.37934)
	y(15) = 7 to 8	B1		From calculation/graph/guesswork
				Hours not required
.			1	
Note	1 Accept (420 to 480) minutes only if "minutes/mins" are s	stated	[[
(4)				
(d) (i)	$r_6 = 8.8 - a - b \times 20 = -0.6$ to -0.61	ЪĴ		AWFW; do not ignore sign (-0.60517)
(I)		B2 (B1)		AWFW; do not ignore sign (-0.00517) AWFW; ignore sign
	$r_6 = 0.5 \text{ to } 0.7$	(191)	2	
Note	1 If, and only if, B0, then attempted use of $\pm(8.8 - a - b)$	$\times 20) \Rightarrow$	-	ing $0.35 \le b \le 0.45$ and $0.45 \le a \le 2.35$
(ii)	· · · ·		_	
	Value will be/is always:			CAO; accept nothing else, but ignore
				zeros after decimal point (eg 0.00)
	0 or zero or nought or nothing	B1		Ignore any explanation
			1	
		75 4 7	15	
		Total	15	

0	Solution	Marks	Total	Comments
5				Accept percentage equivalent answers in (a)
(a)(i)	$P(X < 1.9) = P\left(Z < \frac{1.9 - 1.81}{0.08}\right)$	M1		but see GN4Standardising 1.9 with 1.81 and 0.08but allow (1.81 – 1.9)
	= P(Z < 1.125) = 0.87	A1	(2)	AWRT (0.86971)
(ii)	P(X > 1.85) = P(Z > 0.5) = 1 - P(Z < 0.5)	M1		Area change; can be implied by any final answer < 0.5
	= 1 - 0.69146 = 0.31	A1	(2)	AWRT (0.30854)
(iii)	P(1.81 < <i>X</i> < 1.85)			
	= (0.691 to 0.692) - 0.5 or = 0.5 - (0.308 to 0.309)	B1		Can be implied by a correct answer
	= <u>0.19</u>	B1	(2)	AWRT (0.19146)
(b)(i)			6	
(b)(i)	$z = \text{or} < \frac{9.25 - \mu}{\sigma} \text{or} 9.25 = \mu + z\sigma$	M1		Either expression or with z replaced by 1.17 to 1.18 (AWFW)
	$0.88 \implies z = 1.17 \text{ to } 1.18$	B1	2	AWFW (ignore sign) (1.175)
Notes	1 Allow \overline{x} /mean instead of μ and/or s/sd instead of σ 2 Result of 9.25 – $\mu = z\sigma$ stated without any prior evidend 3 Working back from the given answer 9.25 – $\mu = z \times \sigma$ 4 The M1 cannot be scored for work in (b)(ii) 5 The z-value of 1.17 to 1.18 (AWFW) must be seen in (b)	\Rightarrow M0	B1; seen o	nly in (b)(ii) scores B0
(ii)	$P(Y > 8.75) = 0.975 \implies z = 1.96$	B1		AWRT (ignore sign)
	Thus $9.25 - \mu = +1.175\sigma$ $8.75 - \mu = -1.96\sigma$			(1.17 to 1.18) AWFW (ignore sign)(1.96) AWRT (ignore sign)A valid method for solution of two
	giving $0.5 = 3.135\sigma$	M1		equations that are correct except for signs of z-values (see Note 1)
	$\sigma = 0.16$	Adep1		AWRT (0.15949) Dependent on two fully correct equations including signs of z-values
	$\mu = \underline{9 \text{ to } 9.1}$	_	4	AWFW (9.06260)
Note	1 Accept method as shown or substitution for either μ or σ	from one e	quation into	the other, even if <i>z</i> -value signs are incorrect
		Total	12	
L		IUtal	14	1

Q	Solution	Marks	Total	Comments
6	Accept 3 dp rounding of probabilities from tables			Accept percentage equivalent answers in
(a)	T. T. T. G. T. M.			(a) & (b) but see GN4
(i)				
	$P(X \le 15) = 0.694 \text{ to } 0.695$	B1	(1)	AWFW (0.6946)
(ii)			(1)	
	P(X > 10)			
	= 1 - 0.1215 = 0.878 to 0.879	M1 A1		AWFW (0.8785)
	- 0.070 10 0.079			(0.0705)
	= 1 - 0.0644 or 0.935 to 0.936	(M1)		
Note	1 For calculation of individual terms or no method: award	B2 for 0.8	(2) 78 to 0.879	(AWFW): B1 for 0.935 to 0.936 (AWFW)
(iii)				
	P(12 < X < 18) (r) (r)			
	(p_1) (p_2) = 0.8761 or 0.9301	M1		
	MINUS 0.3143 or 0.2053	M1		
	= <u>0.561 to 0.562</u>	A1		AWFW (0.5618)
	1 For calculation of individual terms or no method: award	P3 for 0.5	(3)	(AWEWD: P2 for 0.670 ± 0.671 (AWEW):
Notes	B2 for 0.615 to 0.616 (AWFW); B2 for 0.724 to 0.725 (01 10 0.302	(AWFW), B2 101 0.070 to 0.071 (AWFW),
(iv)	2 $(1-p_2) - (1-p_1) \Rightarrow M1 M1 A1 \text{ or } M1 M1 \text{ or } M1$			
(1)	Mean of distribution = $40 \times 0.35 = 14$	B1		CAO; can be implied
	$\mathbf{p}(\mathbf{Y}-1\mathbf{A})$			
	P(X=14) (40)			
	$= \binom{40}{14} 0.35^{14} 0.65^{26}$			Fully correct expression
	or	M1		Can be implied
	= 0.5721 - 0.4408			Correct difference
	- 0.3721 - 0.4408			Correct difference
	= 0.131 to 0.132	A1		AWFW (0.1313)
			(3) 9	
(b)			,	
	Selection is at random	B1		Statement must include word "random"
	P(Y < 30 B(50, 0.7))			
	= 1 - 0.9522	M2		
	= <u>0.047 to 0.048</u>	A1		AWFW (0.0478)
	= 1 - 0.9152 or 0.084 to 0.085	(M2)		
	= 1 - 0.9749 or 0.025 to 0.026	(M2)		
	= 0.952 to 0.953	(M1)	4	
Note	1 For direct use of $P(Y < 30 B(50, 0.7))$ using calculator or (D1) P2 (0.024 ± 0.025 (AWEW) (D1) P2 (0.025		: award (B	
	(B1) B2 for 0.084 to 0.085 (AWFW); (B1) B2 for 0.025	to 0.026 (A	(B 	1) IVI1 FOR 0.952 to 0.953
		Total	13	

Q	Solution	Marks	Total	Comments	
7 (a)	Sd of \overline{B} = <u>0.3/$\sqrt{12}$ or $\sqrt{3/20}$ or</u> <u>0.086 to 0.087</u>			CAO AWFW (0.08660)	
	or	B1		Can be implied in what follows	
	Var of $\overline{B} = 0.3^2/12$ or $3/400$ or 0.0075			CAO	
	$P(\overline{B} < 10) = P\left(Z < \frac{10 - 10.15}{0.3/\sqrt{12}}\right) = P(Z < -0.5\sqrt{12})$	M1		Standardising 10 with 10.15 and 0.3/√12 OE ; allow (10.15 – 10)	
	= P(Z < -1.732) = 1 - P(Z < 1.732)	m1		Area change Can be implied by a correct answer or by an answer < 0.5	
	$= 1 - 0.958(37) \qquad = 0.041 \text{ to } 0.042$	A1	4	AWFW (0.04163)	
Note	1 Use of distribution of total: B1 for Sd = $0.3\sqrt{12}$ (OE); M1 for P(Z < (120 - 121.8)/(0.3 $\sqrt{12}$)) or P(Z < -6/ $\sqrt{12}$) or P(Z < -0.5 $\sqrt{12}$); m1 for area change [P(Z < -1.732) = 1 - P(Z < 1.732)]; A1 for 0.041 to 0.042 (AWFW)				
	Part (a)	Total	4		

	Solution	Marks	Total	Comments	
Q 7	Continued				
	Part (a)	Total	4		
(b) (i)	<u>or</u> $99\% (0.99) \Rightarrow z = 2.57 \text{ to } 2.58$ $\Rightarrow t = 2.70 \text{ to } 2.71$	B1		AWFW(2.5758)AWFW(2.708)	
	CI for μ is			Ignore any notation	
	$304.6 \pm \begin{pmatrix} 2.57 \text{ to } 2.58 \\ 2.32 \text{ to } 2.33 \\ 2.70 \text{ to } 2.71 \\ 2.42 \text{ to } 2.43 \end{pmatrix} \times \frac{(5.37 \text{ or } 5.43 \text{ to } 5.44)}{\sqrt{40 \text{ or } 39}}$	M2,1 (-1 ee)		M0 if CI is not of the form: $\overline{x} \pm z \times \frac{\sigma}{\sqrt{40 \text{ or } 39}}$ $5.37 \times \sqrt{\frac{40}{39}} = 5.4384$	
	Hence $304.6 \pm (2.2 \text{ or } 2.3)$			CAO; note 'or' (not 'to')	
	or (answers must be to 1 dp)	Adep1		Dependent on award of M2	
	(302.3, 306.9) or (302.4, 306.8)		4	CAO; note 'or'	
	1 An incorrect expression for CI followed by a numerically c	orrect CI =	\Rightarrow 2 solution	ons \Rightarrow ((0 or 1) + 4)/2 \Rightarrow 2 marks	
(ii)	Claim 1:				
	Clear correct comparison of 300 with CI eg 300 is below CI or LCL > 300	BF1		Statement must include reference to 300 F on CI providing it is above 300 Must have found an interval in (b)(i) but quoting values for CI or CLs is not required	
	Agree with or accept claim	Bdep1	(2)	OE; dependent on BF1	
	 1 Statement must clearly indicate that "300 is below the CI" OE 2 Statements of the form "It/mean/value/etc is below/outside/not within the CI" ⇒ BF0 3 Statements of the form "300 is below/outside/not within 99% of the data/values/weights" ⇒ BF0 4 Statements such as "Claim is likely/reasonable/supported/correct/true/possible/valid" ⇒ Bdep1 providing BF1 				
	Claim 2:				
	Attempt at 304.6 – 5.37 <i>n</i>	M1		Allow $0.86 \le n \le 3$ with a correct numerical answer (see Note 1)	
	Result < 300 so disagree with or reject claim	A1	(2)	OE Must be a clear correct comparison of stated 300 with calculated result	
	$\Rightarrow 0.19 \text{ to } 0.20 \text{ (AWFW)} \Rightarrow M1 \qquad \text{Result } > 0 \text{ so disagree with or reject claim} \Rightarrow A1$ $3 (300 - 304.6)/5.37 = 0.85 \text{ to } 0.86 \text{ (AWFW)} \Rightarrow M1 \qquad \text{Result } < (1, 2 \text{ or } 3) \text{ so disagree with or reject claim} \Rightarrow A1$				
	3 $(300 - 304.0)/(3.3) = 0.83 \text{ to 0.80} (AWFW) \Rightarrow M1 \text{ R}$	esuit < (1,	2 or 3) so 4	usagree with or reject claim \Rightarrow A1	
			12		