

AS **Mathematics**

MS1B Statistics 1B Mark scheme

6360 June 2016

Version 1.0: Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk.

Copyright © 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
Е	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

General Notes for MS1B

- GN1 There is no allowance for misreads (MR) or miscopies (MC) unless specifically stated in a question.
- **GN2** In general, a correct answer (to accuracy required) without working scores full marks but an incorrect answer (or an answer not to required accuracy) scores no marks.
- GN3 In general, a correct answer (to accuracy required) without units scores full marks.
- **GN4** When applying AWFW, a slightly inaccurate numerical answer that is subsequently rounded to fall within the accepted range cannot be awarded full marks.
- **GN5** Where percentage equivalent answers are permitted in a question, then penalise by **one accuracy mark** at the first **correct** answer but only if no indication of percentage (eg %) is shown.
- **GN6** In questions involving probabilities, do **not** award **accuracy** marks for answers given in the form of a ratio or odds such as 13/47 given as 13:47 or 13:34.
- **GN7** Accept decimal answers, providing that they have **at least two** leading zeros, in the form $c \times 10^{-n}$ (eg 0.00321 as 3.21×10^{-3}).
- GN8 Where a candidate's response to a part of a question is simply to label the part (eg (d)(i)) with nothing else (ie no attempt at a solution), then this is still treated as a response and marked as 0 rather than NR. Also, deleted work, if not replaced, should be marked and not treated as NR.

Specific Notes for MS1B

1. Question 2

Unless clearly identified assume that the order is 'measure of average' then 'measure of spread'. Marks of B0 B0 in (b) have major implications as to the marks available in (c) using the SC.

2. Question 3

Despite the answers to (a)(v) and (b) not being exact, the final accuracy marks are CAO (3 dp) and CAO (3 sf) respectively.

3. Question 4

Take care not to miss the awarding of B1 for the SC in (b).

4. Question 5

In (a)(iii), the mark is either B2 or B0. Take careful note of Notes 1, 2 and 3 after (c)(ii); the switching of answers is not unusual nor are confused answers. Thus, for example, 0.99 to 0.995 is seen in (i), and 0.84 or (0.99 to 0.995) followed by $(0.99 \text{ to } 0.995)^6$ is seen in (ii); the latter step is **not** ISW.

5. Question 6

In (a)(iii) and (a)(iv) the B1 for the value of p can be inferred from a probability. Thus, for example, in (a)(iii), the probability of 0.9405 scores B1 and 0.059 to 0.06 scores B1 M1.

6. Question 7

If B1* is not scored in (b)(i), then it can be scored in (b)(ii) for 166 to 167 or, by inference, from 17.5 or 20 (OE) or 7 or 8.

In (b)(i), statements of the form "€400 is £333.33. It lies within the CI in (a)." \Rightarrow B1 BF0 Bdep0. In (b)(i), having previously calculated (€CI as (309, 453), then statements of the form "The claim that the mean is (€400 is valid as **this** lies within the CI." \Rightarrow B1 BF0 Bdep0.

Q	Solution	Marks	Total	Comments
1				
(a)				
	r = 0.959	B3		AWRT (0.95915)
	$= \frac{0.95 \text{ to } 0.97}{0.92 \text{ to } 0.92}$	(B2)		AWFW
	= 0.9 to 0.99	(B1)		AWFW
	Attempt at $\sum x \sum x^2 \sum y \sum y^2 \& \sum xy$ or Attempt at $S_{xx} S_{yy} \& S_{xy}$	(M1)		1980 327726 1896 300598 & 313826 (all 5 attempted) 1026 1030 & 986 (all 3 attempted)
	Attempt at substitution into correct corresponding formula for r	(m1)		
	r = 0.959	(A1)		AWRT
			3	
(b)				
	(Very/extremely) strong positive (linear) correlation	Bdep1		Dependent on $0.9 \le r \le 0.99$
Notes	 Statements must include the words "strong" and "positive ignore additional comments unless clearly contradictory The only acceptable qualifiers for "strong" are "very" of 3 The use of: "highly/moderately/quite/fairly/relatively/reas The use of: "high or big or good or some or moderate 	or "extreme onably/resp	ely" ectively stro	$pong'' \Rightarrow Bdep0$
	between			
	Height(s) and arm span(s) of men aged 21 to 40	B1	2	Context; providing $-1 < r < 1$ Must contain at least the 4 emboldened words
Notes	1 "As heights of men (aged 21 to 40) increase so do arm span		-	1
-	2 "As heights/x increase so do arm spans/y" (OE) Bdep0 B6		_	
		Total	5	

Q	Solution	Marks	Total	Comments
2				
(a)(i)				
	Mode = $\underline{26}$	B1	1	CAO
Notes	1 "Mode is 26 (visitors) because largest frequency/number of	of days is 1	$\frac{1}{3"(OF)} \rightarrow$	B1
notes	1 Wode is 26 (visitors) because largest nequency number (2 "Modes are 13 and 26" (OE) \Rightarrow B0	<i>n</i> days is 1	5 (OL) →	DI
(ii)				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	F: 1 3 6 12 20 30 43 50 52 53 55			
	Median = $\underline{25}$	B1		CAO
	IQR = 26 - 24 = 2	B1	•	CAO
Notes	1 Median is at $CF = 27$ to 28, UQ is at $CF = 41$ to 42 and	LO is at ($\frac{2}{CF = 13 \text{ to } 1}$	4
	2 An answer of 25 or/and 2 with clearly shown incorrect me	-		
(b)	Maan	D 1		CAO: accent acthing also
	Mean	B1		CAO; accept nothing else
	Dange or Standard deviation or Variance	B1		CAO; accept naming of only one of
	Range or Standard deviation or Variance	DI		these three measures; nothing else
N T (1 II-less alcouder identified on to unkick in the functions of our		2	· ····
Notes	1 Unless clearly identified as to which is the 'measure of aver requested in question (ie average then spread) so (eg sin			
	possibility, using SC below, of M1 M1 in (c)) 2 Accept "arithmetic mean"			
	3 Do not accept abbreviations such as "Sd / Var" or symbols	ols such as	" $\overline{x} / \mu / w$	$s/\sigma/s^2/\sigma^2$ "
(c)		ois such us		
	Mean = 25.6	Bdep2		CAO $\sum fx = 1408$
		_		Dependent on $1^{st} B1$ in (b)
	Mean = $25 \text{ to } 26$	(B1dep)		AWFW
	$P_{anga} = 45$	^		САО
	Range = $\underline{45}$			
	or	Bdep1		Dependent on 2^{nd} B1 in (b)
	Sd(n) = 5.26 or $Sd(n-1) = 5.31$			AWRT (5.26256 or 5.31106)
	or			$\sum f x^2 = 37568$
	Var(n) = 27.7 or $Var(n-1) = 28.2$	\checkmark	3	AWRT (27.6945 or 28.2074)
Notes	1 Unless identified, by name, abbreviation or symbol, as to v	which is the		f average' and which is the 'measure of spread',
1,000	assume order is as requested in question (ie average then spread) so (eg simply "5.26 and 25.6" \Rightarrow Bdep0 Bdep0)			
	 2 For the measure of average, the only valid answer is 25.6 (CAO) or 25 to 26 (AWFW) 3 For the measure of spread, award Bdep1 for any seen (CAO/AWRT) value that corresponds to the one measure of spread named 			
	correctly in (b) so (eg "Variance" named in (b) and "5.31 and 28.2" seen in (c) \Rightarrow Bdep1			
	but "Variance" named in (b) and "5.31 only" seen in (c) \Rightarrow Bdep0) 1 If, and only if, Bdep0 Bdep0 scored, then, ignoring labels :			
SC	award M1 for 25 to 26 (AWFW) and M1 for one of 45, 5.26, 5.31, 27.7 or 28.2 (AWRT)			
		T ()	6	
		Total	8	

Q	Solution	Marks	Total	Comments
3(a)	Accept the equivalent percentage answers with %-sign in			
(i)	$P(A_{41-65}) = \frac{176/500}{176/500} = \frac{88}{250} = \frac{44}{125} = 0.352$	B1	(1)	CAO; any one of four listed answers
(ii)	$P(A_{\geq 66} \cap B_2) = \frac{68/500 = 34/250 = 17/125 = 0.136}{68/500 = 34/250 = 17/125 = 0.136}$	B1	(1)	CAO; any one of four listed answers
(iii)	$P(A_{19-40} \cap B_{\le 1}) = \frac{17+62}{500} = \frac{79}{500}$	M1		Numerator CAO
	500 500 = <u>0.158</u>	A1	(2)	CAO
(iv)	$P(A_{\geq 41} B_2) =$			
	$\frac{(35+68)/500}{130/500} \text{ or } \frac{(130-5-22)/500}{130/500} \text{ or } \frac{103}{130}$	M1		Fraction CAO
	= <u>0.792</u>	A1	(2)	AWRT (0.79231)
(v)	$P(B_{\geq 2} A_{\leq 65}) =$			
		M1		Numerator CAO $(130 - 68 + 40 - 6)$
	$\frac{5+(0)+22+3+35+31}{80+104+176} \text{ or } \frac{96}{360}$	M1		Denominator CAO $(500 - 140)$
	$\frac{48}{180} \text{ or } \frac{24}{90} \text{ or } \frac{12}{45} \text{ or } \frac{4}{15}$	(M2)		(Accept numerator and denominator each ÷ 500)
	= 0.267	A1	(3)	CAO (3 dp only) (0.26667)
			(3) 9	
(b)	$P(A_{41-65} \cap B_{>0}) =$		-	
	$\frac{82+35+31}{500} \text{ or } \frac{176-28}{500} \text{ or } \frac{148}{500} \qquad (p_1)$	B1		CAO; OE $\left(\frac{74}{250}, \frac{37}{125}, 0.296\right)$ Seen anywhere, even in an incorrect expression
	$\frac{P(A_{\geq 66} \cap B_{1 \text{ or } 2}) =}{\frac{53 + 68}{500} \text{ or } \frac{140 - 13 - 6}{500} \text{ or } \frac{121}{500}} \qquad (p_2)$	B1		CAO; OE (0.242) Seen anywhere, even in an incorrect expression
	Prob = $(p_1)^2 \times (p_2)^2$ or $(p_1 \times p_2)^2$	M1		Providing $0 < p_1$, $p_2 < 1$ Must be equivalent to product of two squared probabilities with no extra terms
	$\times \begin{pmatrix} 4\\2 \end{pmatrix}$ or 6	m1		
	= 0.0308	A1	5	CAO (3 sf only) (0.03078686)
SCs	1 Answer of 0.00513 (AWRT) even without working \Rightarrow 2 Answer of 0.0716 (AWRT) even without working \Rightarrow 3 In each of the following (incorrect) expressions, ($\otimes \Rightarrow \times$	B1 B1 M0 r	no A0	1
	Ignore order of terms and/or value of <i>n</i> providing <i>n</i> is an $\left(\frac{148}{500} \otimes p_3 \otimes \frac{121}{500} \otimes p_4\right) \times n \implies B1 B1 \text{ and } \left(\frac{148}{500} \otimes p_4\right)$			$p_3 \otimes p_4 \otimes \frac{121}{500} \otimes p_5 > n \Rightarrow B1$
	4 Use of divisors of 504, 503, 502, and 501 \Rightarrow max of M1 m1 but much more likely to be M0 mo 5 A final answer of 3.08×10^{-2} does score A1			
	5 A mai answer of 5.08 × 10 uoes score A1			
		Total	14	
L				1

Q	Solution	Marks	Total	Comments	
4 (a)	$b \text{ (gradient/slope)} = \frac{3(.00) \text{ to } 3.01}{2.95 \text{ to } 3.05}$ $b \text{ (gradient/slope)} = \frac{2.95 \text{ to } 3.05}{2.95 \text{ to } 3.05}$	B2 (B1)		AWFW (3.0 AWFW	00420)
	$a (intercept) = \frac{181 \text{ to } 182}{179 \text{ to } 183}$ $a (intercept) = \frac{179 \text{ to } 183}{179 \text{ to } 183}$	B2 (B1)		AWFW (181.3 AWFW	30070)
	Attempt at $\sum x \sum x^2 \sum y \& \sum xy$ or Attempt at $S_{xx} \& S_{xy}$	(M1)		570 30650 3888 & 195420 (all 4 attempted) $(\sum y^2 = 12)$ 3575 & 10740	,
	Attempt at substitution into correct corresponding formula for b	(m1)		(both attempted) $(S_{yy} =$	32512)
	b = 3(.00) to 3.01 $a = 181$ to 182	(A1 A1)	4	AWFW $(\overline{x} = 47.5 \& \overline{y})$	7 = 324)
Notes	 Written form of equation is not required Award 4 marks for y = (181 to 182) + (3 to 3.01)x or fe Values of a and b interchanged and equation y = ax + b Values of a and b interchanged and equation y = a + b Values of a and b are not identified (eg y = (181 to 18 Answers as fractions (3³/₇₁₅ and 181⁴³/₁₄₃) can score at most Some/all of marks can be scored in (b), (c) & (d), even if s be recouped by subsequent working in (b) or (c) but see N 	b stated or x stated or 2) + (3 to 3. B1 B1 or come/all of r	used in (c) used in (c) 01) or (18 M1 m1	$\Rightarrow \max \text{ of } 4 \text{ marks} \\ \Rightarrow 0 \text{ marks} \\ 1 \text{ to } 182) + (3 \text{ to } 3.01)) \Rightarrow 0 \text{ marks} \end{cases}$	
(b)	Each/every/one degree rise in water temperature results in	B1			
	or increase per degree is (on average) <i>b</i> grams	BF1		F on <i>b</i> providing $2.95 \le b \le 3$. Accept, for example, 5°C and 5 <i>b</i> grams for B1 BF1	05
Notes	1 To score any marks, an explanation must indicate change in	n x affectin	2 g change in	y, not change in y affecting change in :	x
SC	 2 Reference only to correlation ⇒ B0 BF0 1 As <i>x</i>/temperature increases (by <i>k</i>) then <i>y</i>/mass increases by <i>b</i> (OE; value of <i>b</i> (2.95 ≤ <i>b</i> ≤ 3.05) must be stated but context and/or units are not required) ⇒ B1 				
(c)	y(68) = 385 to 386	B1	1	AWFW (385	.5860)
Notes	1 Ignore method used 2 If linear interpolation from data is used, then $y(68) = 384$ 3 If <i>a</i> and <i>b</i> are interchanged, then $y(68) = 12150$ to 124)		
(d)	Residuals are relatively small/less than 10% or			Accept any value within 3% to 1	10%
	Percentage residuals are small or Residuals are small relative/compared to	B1			
	y-values/estimate in (c)				
	Estimate is (likely to be) (relatively) accurate	Bdep1	2	Dependent on B1	
Notes	 Accept the use of: "moderately/quite/fairly/reasonably" " "Residuals are small" or "Residuals are small relative to x Residuals show points are "close to the line" or "not far fa Conflicting reasons justifying both "accurate" and "not accurate" 	c-values" = rom the line	"(OE) ⇒	B0 Bdep0	
		Total	9		

Q	Solution	Marks	Total	Comments
5(a)	Accept the equivalent percentage answers with %-sign (s			
(i)	$P(X < 1540) = P\left(Z < \frac{1540 - 1525}{9.6}\right)$	M1		Standardising 1540 with 1525 and 9.6 but allow (1525 – 1540)
	= P(Z < 1.56(25)) = 0.94 to 0.942	A1	(2)	AWFW (0.94091)
(ii)	P(X > 1535) = P(Z > 1.04(17) = 1 - P(Z < 1.04)	M1		Area change; can be implied by any final answer < 0.5
	= 1 - 0.85122 = 0.148 to 0.15	A1	(2)	AWFW (0.14878)
(iii)	P(1515 < X < 1540) = P(-1.04 < Z < 1.56) = 0.94091 - (1 - 0.85122)			
	= 0.79 to 0.793	B2	(2)	AWFW (0.79213)
(iv)	$P(X \neq 1500) = 1$ or one or unity or 100%	B1	(1)	CAO; accept nothing else but ignore zeros after decimal point (eg 1.00) Ignore additional words providing that they are not contradictory (eg certain so = 1)
			(1) 7	
(b)	$10\% (0.1) \implies z = \underline{1.28}$	B1		AWRT (1.2816) Seen; ignore sign
	$\frac{\pm (1535 - (\mu \text{ or } \overline{x} \text{ or } x))}{9.6} = \pm (1.28 \text{ to } 1.29)$	M1		Standardising 1535 with μ/\overline{x} and 9.6; allow $((\mu \text{ or } \overline{x}) - 1535)$ and equating to $\pm (1.28 \text{ to } 1.29)$
	$\mu = 1522 \text{ to } 1523$	A1		AWFW (1522.697)
	Reduction = $1525 - 1522.7 = 2.3$	Adep1	4	CAO (1 dp only); dependent on A1
Note	1 Award max of B1 M1 A0 A0 if the signs are not consiste	nt througho	ut (answer	for μ is likely to be 1547.3)
	Parts (a) & (b)	Total	11	
L				

Q	Solution	Marks	Total	Comments	
5	Continued	IVIAI KS	Total		
5	Parts (a) & (b)	Total	11		
(c)		Total	11		
(C)	Each pack contains a random sample of bottles			Mart contain at least the 2 control days days and	
	or	B1		Must contain at least the 3 emboldened words and clearly infer that 'bottles in a pack are a	
	Packs contain random samples of bottles	DI		random sample'	
	r ucks contain r union sumples of bottles		(1)	This mark can be scored anywhere in (c)	
Note	1 "Samples (of bottles) are random" (OE) or "Each bottle is	randomly s	· · /	-	
11010	2 "Packs are selected at random" (OE) or "Each pack is selected				
	3 "Packs/bottles are selected independently" (OE) or "Packs				
(i)					
	p(-505-508.5)				
	$p = P(bottle > 505) = P\left(Z > \frac{505 - 508.5}{3.5}\right) =$				
				AWRT (0.84134)	
	P(Z > -1) = P(Z < 1) = 0.84	B1			
				Can be implied by a correct answer	
	$\mathbf{P}(\mathbf{C} \mid \mathbf{b} \mid \mathbf{t} \mid \mathbf{b} \mid \mathbf{c} \in \mathbf{D}(\mathbf{C})) = \mathbf{b}$	MI			
	$P(6 \text{ bottles} > 505) = p^6$	M1		Providing 0	
	= 0.35 to 0.356	A1		AWFW (0.35469)	
	1 $(1, 1, 1)$ $(1, 0, 0, 1, 20)$ $(1, 0, 0, 1, 20)$		(3)		
Notes	1 Calculation of $(1 - 0.84134) = 0.15866 \implies B0$ 2 Calculation of $(1 - 0.84134)^6 \implies B0 M1 A0$				
(ii)					
(11)	35^2 12.25				
	$V(\overline{B}) = \frac{3.5^2}{6}$ or $\frac{12.25}{6}$ or $\frac{2.04}{2}$			CAO/AWRT (2.04167)	
	0 0	B1		Can be implied by what follows	
	or 25	DI		Can be implied by what follows	
	$\operatorname{Sd}(\overline{B}) = \frac{3.5}{\sqrt{6}}$ or <u>1.43</u>			CAO/AWRT (1.42887)	
	$\sqrt{6}$				
	$p(\bar{z}, z_0, z_0) = p(z_0, z_0, z_0, z_0, z_0, z_0, z_0, z_0, $			Standardising 505 with 508.5 and	
	$P(\overline{B} > 505) = P\left(Z > \frac{505 - 508.5}{3.5/\sqrt{6}}\right)$	M1		$3.5/\sqrt{6}$ (OE); allow (508.5 – 505)	
	$(3.3/\sqrt{0})$				
	$= P(Z > -\sqrt{6}) = P(Z > -2.45) = 0.99 \text{ to } 0.995$	A1		AWFW (0.99285)	
			(3)		
			7		
Notes	1 Do not give BOD for unclear/dubious/questionable idem 2 If answers to (i) & (ii) are not identified, then mark as (i)				
	3 If answers to (i) & (ii) are switched, then the only mark as (i)			stating the 'necessary assumption'	
	4 In (ii), award of B0 \Rightarrow 0/3 marks			<u> </u>	
SC	1 Use of distribution of total in (ii):				
	B1 for Sd = $3.5\sqrt{6}$ (OE); M1 for P(Z > (3030 - 3051)/(3.5 $\sqrt{6}$)) or P(Z > - $\sqrt{6}$) or P(Z > -2.45)				
	A1 for 0.99 to 0.995 (AWFW); award of B0 \Rightarrow 0/3 m	narks			
		Tetal	10		
		Total	18		

Q	Solution	Marks	Total	Comments
6(a)	Accept 3 dp rounding of probabilities from tables	Accept t	he equivale	nt percentage answers with %-sign (see GN5)
(i)	$P(\text{Red} = 4) = {\binom{50}{4}} (0.18)^4 (0.82)^{46}$ = 230300 × 0.00104976 × 0.000108502	M1		Correct expression Can be implied by a correct answer Ignore additional expressions
	= <u>0.026 to 0.027</u>	A1	2	AWFW (0.02623)
(ii)	$P(Yellow \le 10) = \underline{0.88}$	B1	1	AWRT (0.8801)
(iii)				
	P(Blue or Green) = $\underline{0.5}$	B1		CAO; indicated as a value of p or implied by any one of the probabilities opposite
	P(Blue or Green ≥ 30) = 1 - 0.8987 = <u>0.101 to 0.102</u>	M1 A1		AWFW (0.1013)
	= 1 - 0.9405 or 0.059 to 0.06	(M1)	3	
Note	1 For calculation of individual terms or no method: award	B3 for 0.1	01 to 0.102	(AWFW); B2 for 0.059 to 0.06 (AWFW)
(iv)	Using $p = 0.2$ gives Using $p = 0.8$ gives	B1		Either CAO; indicated as a value of p or implied by any one of the probabilities opposite
	0.9393 or 0.9692 (<i>p</i> ₁) 0.9520 or 0.9815	M1		One of either pair
	MINUS MINUS			
	0.0480 or 0.0185 (<i>p</i> ₂) 0.0607 or 0.0308	M1		One of matching pair from above
	= <u>0.89 to 0.892</u>	A1		AWFW (0.8913)
Notes	1 For calculation of individual terms or no method: award B3 for 0.95 to 0.952 (AWFW) 2 Answers involving $(1 - p_2) - (1 - p_1) \Rightarrow$ (B1) M1 M1 A 3 Answers involving $1 - (p_1 - p_2)$ even after $(p_1 - p_2)$ (eg	A1 or (B1)	M1 M1 or	(B1) M1
(b)	Mean = 300×0.18 = <u>54</u>	B1		CAO
	Variance = $300 \times 0.18 \times 0.82$ = <u>44.2 to 44.3</u>	B1	2	AWFW (44.28)
Notes	1 Ignore any subsequent work following correct statement of 2 The statement "44.2 to 44.3" followed by "Variance = 6.6			
		T ()	10	
		Total	12	

Q	Solution	Marks	Total	Comments
7 (a)	99% (0.99) $\Rightarrow z = 2.57$ to 2.58	B1		AWFW (2.5758)
	CI for μ is $317.5 \pm \begin{pmatrix} 2.57 \text{ to } 2.58 \\ 2.32 \text{ to } 2.33 \\ 2.70 \text{ to } 2.71 \\ 2.42 \text{ to } 2.43 \end{pmatrix} \times \frac{(146.3 \text{ or } 148.1 \text{ to } 148.2)}{\sqrt{40 \text{ or } 39}}$	M2,1 (-1 ee)		Ignore any notation M0 if CI is not of the form: $317.5 \pm (z \text{ or } t) \times ((s \text{ or } s^2)/\sqrt{40 \text{ or } 39})$ Allow any combination in last term NB: $146.3 \times \sqrt{40/39} = 148.16377$
	Hence $317.50 \pm (58.50 \text{ to } 60.50)$ or (257.00 to 259.00, 376.00 to 378.00)	Adep1	4	CAO/AWFW; 1 or 2 dp only Dependent on award of M2 AWFW; 1 or 2 dp only
Notes	1 If award of M0 is followed by a numerically correct CI = 2 Use same rules as above for $t = 2.7$ to 2.71 (AWFW) \Rightarrow			.00) or (254.50 to 255.50, 379.50 to 380.50)
(b) (i)		B1*		AWFW (£333.33) * This mark may be scored in (b)(ii) * CAO/AWFW (2 dp not required) AWFW (2 dp not required)
	Clear correct comparison of (333 to 334) with CI in (a) {eg 333.33 is within CI in (a)} or (Must be clear that comparing like with like) Clear correct comparison of (400) with CI in (b)(i) {eg 400 is within CI in (b)(i)}	BF1		Statement must include reference to 333 to 334 F on CI providing it is includes 333 to 334 Must have found an interval in (a) but quoting values for CI or CLs is not required Statement must include reference to 400 F on CI providing it is includes 400 Must have found an interval in (b)(i) but quoting values for CI or CLs is not required
	Agree with or accept claim Claim is (likely to be) true/correct/right/valid/accurate	Bdep1	(3)	OE; dependent on BF1
Notes	 Statement must clearly indicate that "(333 to 334 or 400) Statements of the form "It/this/mean/value/etc is within the statements of the form "(333 to 334 or 400) is within 999 Statements such as "Claim is likely to be reasonable/support 	ne (correspo 6 of the dat	ne correspo onding) CI'' a/values/po	\Rightarrow BF0 unds/euros" \Rightarrow BF0 ole/valid" \Rightarrow Bdep1 providing BF1
(ii)	€200 equates to (£) <u>166 to 167</u> Per cent < €200/£166.67 $\frac{7 \text{ or 8}}{40} \times 100 = \underline{17.5 \text{ or } 20}$ seen with 25 or <u>7 or 8</u> seen with <u>10</u> or (€ <u>200</u> seen with (€ <u>225</u> or (£) <u>166 to 167</u> seen with (£) <u>187.5(0)</u>	B1		AWFW(£166.67)* Award B1 if 1^{st} B1 not scored in (b)(i) * Can be implied by 17.5 or 20 (OE) or 7 or 8Requires both correct numbers (OE) from any of these pairseg 17.5 & 25, 0.2 & 0.25, 8 & 10 \Rightarrow B1 7 & 25 only \Rightarrow B0
	Agree with or accept claim Claim is (likely to be) true/correct/right/valid/accurate	Bdep1	(2)	OE; dependent on B1
		Total	9	