

Candidate Number

ADVANCED
General Certificate of Education
2022 Reserve Series

Mathematics

Assessment Unit A2 1

assessing
Pure Mathematics

[AMT11] *AMT11* MONDAY 27 JUNE, MORNING

TIME

2 hours 30 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer all ten questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages or tracing paper. Complete in black ink only. Do not write with a gel pen.
Questions which require drawing or sketching should be completed using an HB pencil.
Show clearly the full development of your answers. Answers without working may not gain full credit.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 150
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$ 13786

1 (a) State whether the following sequences converge, diverge or oscillate.
(i) $\frac{2 n^{2}}{n+3}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) $\cos \left(\frac{n \pi}{3}\right)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) $\frac{5 n}{3 n-1}$
\qquad

$$
\text { (b) Find } \sum_{r=1}^{\infty} 3\left(\frac{2}{5}\right)^{r}
$$

(c) The first three terms of an arithmetic progression are

$$
x, 3 x+1,3 x^{2} \quad \text { where } x>0
$$

(i) Find the value of x.
\qquad
(ii) Find the sum of the first 10 terms of this arithmetic progression.

2 The shaded region R, as shown in Fig. 1 below, is the major segment of a circle of radius $r \mathrm{~cm}$ with angle $\mathrm{AOB}=\frac{\pi}{3}$ radians.

Fig. 1
(i) Find the perimeter of R in terms of r.

The perimeter of R is $(10 \pi+6) \mathrm{cm}$.
(ii) Find the value of r.
(iii) Find the area of R.

3 (a) Simplify as far as possible

$$
\frac{4 x^{2}-25}{3 x^{2}+14 x+8} \div \frac{6 x-15}{x+4}
$$

$\frac{4 x^{2}-25}{3 x^{2}+14 x+8} \div \frac{6 x-15}{x+4}$
\qquad
(b) Find, in ascending powers of x, the expansion of

$$
\frac{x+3}{\sqrt{x+2}}
$$

up to and including the term in x^{2}

4 (a) The graph of the function $y=\mathrm{f}(x)$ is shown in Fig. 2 below.

Fig. 2
The curve cuts the axes at $\mathrm{P}(2,0)$ and $\mathrm{Q}(0,-1)$.
Fig. 3 below shows five different transformations of $y=\mathrm{f}(x)$.

Fig. 3
Complete the following statements:
(i) $y=2 \mathrm{f}(x+3)$ is represented by Graph
(ii) $y=-\mathrm{f}(x-2)$ is represented by Graph
(iii) $y=|\mathrm{f}(x)| \quad$ is represented by Graph
(iv) $y=\mathrm{f}^{-1}(x) \quad$ is represented by Graph
(b) The functions g and h are defined by:

$$
\begin{array}{lll}
\mathrm{g}(x)=2+\cos x & x \in \mathbb{R} & 0 \leqslant x \leqslant \pi \\
\mathrm{~h}(x)=\frac{1}{1+x} & x \in \mathbb{R} & x \neq-1
\end{array}
$$

(i) State the range of $\mathrm{g}(x)$.
(ii) Find the inverse function $\mathrm{h}^{-1}(x)$, stating its domain.
\qquad

(iii) Find the composite function $\operatorname{hg}(x)$, stating its domain.

5 The points of intersection of the curves

$$
y=\operatorname{cosec}^{2} 3 x
$$

and

$$
y=x^{2}+1
$$

can be found by solving the equation

$$
\operatorname{cosec}^{2} 3 x-x^{2}-1=0
$$

(i) Show that this equation has a root between $x=0.3$ and $x=0.5$

It is known that there is only one root α in the interval $[0.3,0.5]$.
(ii) By taking $x=0.3$ as a first approximation and using the Newton-Raphson method once, find a better approximation to α.

6 (a) Prove that

$$
\frac{\cos 2 \theta-\cos \theta+1}{\sin 2 \theta-\sin \theta} \equiv \cot \theta
$$

\qquad
(b) Solve the equation

$$
\tan \left(\theta-45^{\circ}\right)=6 \tan \theta \quad \text { where } 0^{\circ} \leqslant \theta \leqslant 360^{\circ}
$$

7 (a) A curve is defined by the parametric equations

$$
\begin{aligned}
& x=\sin t+\cos t \\
& y=4-3 \sin 2 t
\end{aligned}
$$

Find the Cartesian equation of this curve.
(b) A curve is given by the equation

$$
3 x+5 x y^{2}-16=2(x+y)^{2}
$$

Find the equation of the tangent to the curve at the point $(1,3)$.
Leave your answer in the form $a x+b y+c=0$, where a, b and c are integers. [9]

8 (a) The curved surface of a glass bowl can be modelled by rotating the curve

$$
y=3 \tan 4 x
$$

between $x=0$ and $x=\frac{\pi}{16}$ through 2π radians about the x-axis.
Find, in terms of π, the maximum volume of liquid that the bowl can contain. [9]
\qquad
36AMT1127
(ii) Hence find

$$
\int \frac{x^{2}+3 x+35}{2 x^{3}+11 x^{2}+12 x-9} d x
$$

10 In a factory, a biological substance is placed in a large tank.
During the production process, the biological substance reproduces at a rate of $0.25 A \mathrm{~kg}$ per hour, where $A \mathrm{~kg}$ is the amount of substance present at time t hours.

At the same time, the biological substance is pumped out of the tank at a constant rate of 50 kg per hour.
(i) By setting up and solving a suitable differential equation, show that

$$
A=4 k \mathrm{e}^{0.25 t}+200
$$

where k is a constant.
\qquad

At time $t=0, A=190$
(ii) Show that

$$
A=200-10 \mathrm{e}^{0.25 t}
$$

36AMT1133

The tank must be completely empty by the end of each production shift．
（iii）Find the minimum length of time for each shift．
Note that a production shift always lasts for a whole number of hours．
\qquad

The factory management decides to change to 8 -hour production shifts.
They plan to manage this by simply reducing the amount of biological substance in the tank at time $t=0$
(iv) Find the maximum amount of biological substance at time $t=0$ which makes this change feasible, giving your answer to 1 decimal place.
\qquad

THIS IS THE END OF THE QUESTION PAPER

DO NOT WRITE ON THIS PAGE

\qquadFor Examiner's use only Question Number Marks 1 2 3 4 5 6 7 8 9 10 Total Marks

Total Marks
\square

[^0]In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA
will be happy to rectify any omissions of acknowledgement in future if notified.

[^0]: Permission to reproduce all copyright material has been applied for.

