

Rewarding Learning
ADVANCED SUBSIDIARY (AS)
General Certificate of Education 2022

Mathematics

Assessment Unit AS 1

assessing

Pure Mathematics

[SMT11]

THURSDAY 19 MAY, AFTERNOON

TIME

1 hour 45 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
You must answer all nine questions in the spaces provided.
Do not write outside the boxed area on each page or on blank pages.
Complete in black ink only. Do not write with a gel pen.
Questions which require drawing or sketching should be completed using an HB pencil. All working should be clearly shown in the spaces provided. Marks may be awarded for partially correct solutions. Answers without working may not gain full credit.
Answers should be given to three significant figures unless otherwise stated.
You are permitted to use a graphic or scientific calculator in this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 100 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.
A copy of the Mathematical Formulae and Tables booklet is provided.
Throughout the paper the logarithmic notation used is $\ln z$ where it is noted that $\ln z \equiv \log _{\mathrm{e}} z$ 12955.05 R

1 Solve the simultaneous equations

$$
\begin{aligned}
x+3 y & =10 \\
2 x-y+4 z & =2 \\
3 x+2 y-3 z & =19
\end{aligned}
$$

\qquad

2
(a) (i) Write $2 x^{2}+4 x-5 \quad$ in the form $2\left[(x+p)^{2}-q\right]$
\qquad
(ii) Hence state the minimum value of $2 x^{2}+4 x-5$ and the value of x at which it occurs.
\qquad
(b) In a controlled experiment, the number of bacteria N after t hours is given by

$$
N=500 \mathrm{e}^{2 t}
$$

(i) Find the initial value of N. [1]
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Find, in whole minutes, the time for N to increase by 48%
\qquad
(b) Show that

$$
\frac{\tan x \cos x}{\left(1-\cos ^{2} x\right)^{\frac{1}{2}}} \equiv 1
$$

4 A curve is given by the equation $\quad y=x^{2}+x$
(i) Find the equation of the normal to the curve at the point where $x=2$

Leave your answer in the form $a x+b y+c=0$, where a, b and c are integers. [7]
...
\qquad
(ii) Find the values of k for which the line $y=k x-4$ is a tangent to the curve $y=x^{2}+x$
(b) Given that

$$
\int_{-1}^{2}\left(x^{2}-p x+3\right) d x=8
$$

find the value of p.
$6 \mathrm{f}(x)=q x^{3}-7 x^{2}+r \quad$ where q and r are constants.
$\mathrm{f}(x)$ has a factor $(x+1)$
When $\mathrm{f}(x)$ is divided by $(2 x+1)$ the remainder is 7
(i) Find the values of q and r.
\qquad
(ii) Factorise fully the expression $\mathrm{f}(x)$

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

7 (a) Write down the first four terms in ascending powers of x in the expansion of

$$
\begin{equation*}
(2-x)^{8} \tag{4}
\end{equation*}
$$

(b) The term independent of x in the expansion of $\left(\sqrt{x}-\frac{k}{x^{2}}\right)^{10}$ is 405 Find the possible values of k.

DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

(b) Fig. 1 below shows a sketch of a curve with equation $y=8-x^{3}$

Fig. 1
Find the maximum area of a rectangle which can be inscribed in the closed region bounded by the curve and the positive x and y axes.
\qquad

9 (a) Fig. 2 below shows a sketch of a circle with centre $\mathrm{P}(1,1)$.

Fig. 2
The tangent to the circle at the point $\mathrm{Q}(4,3)$ cuts the y-axis at point R .
Find the area of triangle $P Q R$.

\qquad
（b）Fig． 3 below shows a sketch of a right－angled triangle ABC ．

Fig． 3
$A B$ has length $\sqrt{3 x-1}$
BC has length $2 \sqrt{x}$
$\mathrm{BA} \mathrm{C}=\theta$
Given that $\cos ^{2} \theta=\frac{1}{x}$ ，find the value of x ．

\qquad

THIS IS THE END OF THE QUESTION PAPER

BLANK PAGE

DO NOT WRITE ON THIS PAGE

DO NOT WRITE ON THIS PAGE

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	

Total Marks
\square

Permission to reproduce all copyright material has been applied for.

In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

