Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCSE
In Mathematics B (2MB01)
Unit 1: 5MB1H_01 (Higher)
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UG039446
All the material in this publication is copyright
© Pearson Education Ltd 2014
NOTES ON MARKING PRINCIPLES

1. All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

2. Mark schemes should be applied positively.

3. All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e., if the answer matches the mark scheme. Note that in some cases a correct answer alone will not score marks unless supported by working; these situations are made clear in the mark scheme. Examiners should be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.

4. Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

5. Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

6. Mark schemes will award mark for the quality of written communication (QWC).
 The strands are as follows:
 i) **ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear**
 Comprehension and meaning is clear by using correct notation and labelling conventions.

 ii) **select and use a form and style of writing appropriate to purpose and to complex subject matter**
 Reasoning, explanation or argument is correct and appropriately structured to convey mathematical reasoning.

 iii) **organise information clearly and coherently, using specialist vocabulary when appropriate.**
 The mathematical methods and processes used are coherently and clearly organised and the appropriate mathematical vocabulary used.
7 With working
If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks. Send the response to review, and discuss each of these situations with your Team Leader.
If there is no answer on the answer line then check the working for an obvious answer.
Partial answers shown (usually indicated in the ms by brackets) can be awarded the method mark associated with it (implied).
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks; transcription errors may also gain some credit. Send any such responses to review for the Team Leader to consider.
If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

8 Follow through marks
Follow through marks which involve a single stage calculation can be awarded without working since you can check the answer yourself, but if ambiguous do not award.
Follow through marks which involve more than one stage of calculation can only be awarded on sight of the relevant working, even if it appears obvious that there is only one way you could get the answer given.

9 Ignoring subsequent work
It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: e.g. incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect e.g. algebra.

10 Probability
Probability answers must be given a fractions, percentages or decimals. If a candidate gives a decimal equivalent to a probability, this should be written to at least 2 decimal places (unless tenths).
Incorrect notation should lose the accuracy marks, but be awarded any implied method marks.
If a probability answer is given on the answer line using both incorrect and correct notation, award the marks.
If a probability fraction is given then cancelled incorrectly, ignore the incorrectly cancelled answer.
11 Linear equations
Full marks can be gained if the solution alone is given on the answer line, or otherwise unambiguously indicated in working (without contradiction elsewhere). Where the correct solution only is shown substituted, but not identified as the solution, the accuracy mark is lost but any method marks can be awarded (embedded answers).

12 Parts of questions
Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

13 Range of answers
Unless otherwise stated, when an answer is given as a range (e.g. 3.5 – 4.2) then this is inclusive of the end points (e.g. 3.5, 4.2) and includes all numbers within the range (e.g. 4, 4.1)

Guidance on the use of codes within this mark scheme

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>method mark for correct method</td>
</tr>
<tr>
<td>A1</td>
<td>accuracy mark</td>
</tr>
<tr>
<td>B1</td>
<td>Working mark</td>
</tr>
<tr>
<td>C1</td>
<td>communication mark</td>
</tr>
<tr>
<td>QWC</td>
<td>quality of written communication</td>
</tr>
<tr>
<td>oe</td>
<td>or equivalent</td>
</tr>
<tr>
<td>cao</td>
<td>correct answer only</td>
</tr>
<tr>
<td>ft</td>
<td>follow through</td>
</tr>
<tr>
<td>sc</td>
<td>special case</td>
</tr>
<tr>
<td>dep</td>
<td>dependent (on a previous mark or conclusion)</td>
</tr>
<tr>
<td>indep</td>
<td>independent</td>
</tr>
<tr>
<td>isw</td>
<td>ignore subsequent working</td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2 (a)</td>
<td></td>
</tr>
<tr>
<td>2 (b)</td>
<td></td>
</tr>
<tr>
<td>2 (c)</td>
<td></td>
</tr>
<tr>
<td>2 (d)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Question</td>
<td>Working</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>*4</td>
<td></td>
</tr>
</tbody>
</table>

M1 for $200 \div (1 + 9) = 20$
M1 for $750 \div 20 = 37.5$
A1 for $3.7(3\ldots) \text{ or } 3\frac{11}{15} \text{ or } 37.5 \text{ and } 150$
C1 ft (dep on M1) for clear statement of 4 bottles with working shown

OR
M1 for $750 \times 10 = 7500$
M1 for $200 \times 140 = 28000$
A1 for $3.7(3\ldots) \text{ or } 3\frac{11}{15} \text{ or } 28000 \text{ and } 30000$
C1 ft (dep on M1) for clear statement of 4 bottles with working shown

OR
M1 for $200 \times 140 = 28000$
M1 for $28000 \div (9 + 1) = 2800$
A1 for $3.7(3\ldots) \text{ or } 3\frac{11}{15} \text{ or } 2800 \text{ and } 3000$
C1 ft (dep on M1) for clear statement of 4 bottles with working shown

OR
M1 for $200 \div (1 + 9) = 20$
M1 for $140 \times "20" = 2800$
A1 for $3.7(3\ldots) \text{ or } 3\frac{11}{15} \text{ or } 2800 \text{ and } 3000$
C1 ft (dep on M1) for clear statement of 4 bottles with working shown
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 5 | | $\frac{20-x}{20}$ | 2 | M1 for writing $20 - x$ or for 20 as any denominator below an algebraic expression in x or $20 - x \div 20$
A1 for $\frac{20-x}{20}$ or $1 - \frac{x}{20}$ oe |
| 6 | | 2.55 | 3 | B1 for max as 42.5 or 42.49
M1 for max $\times 60$ or 2550
A1 for 2.55 (accept 2.549) |
| 7 | (a) | | 3 | B2 for a fully ordered diagram
(B1 for a correct unordered diagram or ordered with at most two errors)
B1 for a correct key |
| | *(b) | | | A maximum of two B marks from:
B1 for a correct mean or median for either the gym ages or the pool ages.
B1 for a correct range for either the gym ages or the pool ages.
B1 for a correct stem and leaf diagram drawn for the gym ages (no need for a key)
C1 for any correct comparison which relates to the context of the gym ages and pool ages, of either medians means or ranges from correct figures, or from stem & leaf diagrams |
<p>| | | Gym | | Pool |
| | | HV | 45 | < 54 |
| | | LV | 18 | > 10 |
| | | Mean | 32 | > 29.5 |
| | | Median | 34 | > 27.5 |
| | | Range | 27 | < 44 |
| | | Gym | | Pool |
| | | 1 8 9 | | 2 0 1 7 9 |
| | | 2 0 1 7 9 | | 3 2 4 5 6 9 9 |
| | | 3 2 4 5 6 9 9 | | 4 2 4 5 |
| | | 4 2 4 5 | | |</p>
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 8 | | 154 | 3 | M1 for \(\frac{56}{200}\) or \(\frac{550}{200}\)
A1 cao |
| 9 | (a) | 48 | 1 | B1 cao |
| | (b) | 12 | 1 | B1 cao |
| | (c) | 20 | 2 | M1 for \(80 \div 4\)
A1 cao |
| 10 | (a) | 5 × 5 = 25
11 × 20 = 220
23 × 40 = 920
13 × 65 = 845
8 × 90 = 720
2730 ÷ 60 | 45.5 | 4 | M1 for \(\sum f_x\) with \(x\) consistent within intervals (including the end points) allow one error
M1 (dep) for use of all correct mid-interval values
M1 (dep on first M1) for \(\sum f_x \div 60\)
A1 cao |
| | (b) | 5, 16, 39, 52, 60 | 1 | B1 cao |
| | (c) | Cumulative frequency graph | 2 | M1 ft for at least 4 of 5 points from their cf table (values must be cumulative) plotted consistently within each interval
A1 for a fully correct cf graph |
| | (d) | 15, 16 or 17 | 2 | M1 for method shown to read off from \(x = 60\) on their cf graph or linear interpolation from the table
A1 ft from their cf graph |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 11 | | 68 | 3 | M1 for $30 \times 60 = 1800$ or $20 \times 56 = 1120$
M1 for $\left(1800 - 1120\right) \div 10$
A1 cao
Or
M1 for $(60 - 56) \times 20$ or $4 \times 20 = 80$
M1 for $\left(80 \div 10\right) = 8$
A1 cao |
| 12 | $\frac{11264}{27500} (= 0.4096)$
$0.8^n = 0.4096$ | 4 | 2 | M1 for $\frac{11264}{27500} (= 0.4096)$
and 0.8^n evaluated for $n = 2$
OR
attempt to evaluate 27500×0.8^n for at least one value of n (not equal to 1)
OR
finding at least 2 deductions, ie 2 of 5500, 4400, 3520
A1 for 4 cao |
| 13 | (a) | 14 | 1 | B1 cao |
| | (b) | 1.20 | 2 | M1 for attempt to find the gradient oe of the line eg drawing a right angled triangle with base & height shown, or $\frac{y_2 - y_1}{x_2 - x_1}$, values shown
A1 for 1.20 (accept 1.2) |
| 14 | | 17 | 2 | M1 for $\frac{117}{1034} \times 150$ or $16.9(729\ldots)$
A1 for 17 |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 15 | | $\frac{54}{90} = \frac{3}{5}$ | 4 | M1 for use of 9 as denominator of second probability
M1 for a correct method to find the probability of at least one possible combination,
$\frac{1}{10} \times \frac{6}{9}$ or $\frac{6}{10} \times \frac{1}{9}$ or $\frac{3}{10} \times \frac{1}{9}$ or $\frac{1}{10} \times \frac{3}{9}$ or $\frac{6}{10} \times \frac{3}{9}$ or $\frac{3}{10} \times \frac{6}{9}$
or $\frac{1}{10} \times \frac{9}{9}$ or $\frac{6}{10} \times \frac{4}{9}$ or $\frac{3}{10} \times \frac{7}{9}$
M1 for complete and correct method shown
eg $2 \times \left(\frac{1}{10} \times \frac{6}{9} + \frac{6}{10} \times \frac{3}{9} + \frac{3}{10} \times \frac{1}{9} \right)$ or $1 - \left(\frac{6}{10} \times \frac{5}{9} + \frac{3}{10} \times \frac{2}{9} \right)$
A1 for $\frac{54}{90}$ oe

Alternative scheme for replacement
M1 for $\frac{6}{10} \times \frac{6}{10}$ or $\frac{3}{10} \times \frac{3}{10}$ or $\frac{1}{10} \times \frac{1}{10}$
M1 for $1 - \left(\frac{6}{10} \times \frac{6}{10} + \frac{3}{10} \times \frac{3}{10} + \frac{1}{10} \times \frac{1}{10} \right)$
OR
M1 for $\frac{1}{10} \times \frac{6}{10}$ or $\frac{6}{10} \times \frac{3}{10}$ or $\frac{3}{10} \times \frac{1}{10}$
M1 for $2 \times \left(\frac{1}{10} \times \frac{6}{10} + \frac{6}{10} \times \frac{3}{10} + \frac{3}{10} \times \frac{1}{10} \right)$
OR
B2 for $\frac{54}{100}$ oe |
<table>
<thead>
<tr>
<th>Question</th>
<th>Working</th>
<th>Answer</th>
<th>Mark</th>
<th>Notes</th>
</tr>
</thead>
</table>
| 16 (a) | $16 \div 20 = 0.8$
 | $27 \div 10 = 2.7$
 | $36 \div 15 = 2.4$
 | $6 \div 5 = 1.2$ | Correct histogram | 3 | M1 for recognising and showing evidence of using frequency density, eg at least 2 correct frequency densities or a key. A1 for all bars in correct proportions OR for one error with bars and correct labelling and scaling of axes A1 for fully correct histogram including axes labelled and scaled. |
| (b) | | 18\/85 | 3 | M1 for using 40 cm on horizontal scale and using a correct method to convert area of bar to the right of 40 cm to frequency, eg 2.4×5. M1 (dep) for ‘12’ + 6 A1 for $\frac{18}{85}$ oe OR M1 for $\frac{36}{3}$ M1 (dep) for ‘12’ + 6 A1 for $\frac{18}{85}$ oe |
Modifications to the mark scheme for Modified Large Print (MLP) papers.

Only mark scheme amendments are shown where the enlargement or modification of the paper requires a change in the mark scheme.

The following tolerances should be accepted on marking MLP papers, unless otherwise stated below:

- **Angles:** ±5°
- **Measurements of length:** ±5 mm

<table>
<thead>
<tr>
<th>PAPER: 5MB1H_01</th>
<th>Question</th>
<th>Modification</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q02</td>
<td>2cm grid crosses, changed to solid circles. Right axis labeled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q07</td>
<td>Box for key put top left</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q09</td>
<td>Box plot: median changed to 47.5, upper quartile changed to 52.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q09</td>
<td>(C) 52kg changed to 52.5 kg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10</td>
<td>(C) Frequencies changed: 5, 20, 15, 15, 5 grid x axis – 2 cm for 10, y axis 2cm for 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q13</td>
<td>2 cm grid, line moved parallel to original graph line to go through (0,20) (50, 80) (75, 110)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q16</td>
<td>Frequency column: 27 changed to 28 2 cm grid Number of weather stations changed from 85 to 86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>