Mark Scheme (Results)

Summer 2015

Pearson Edexcel GCE in Statistics 4 (6686/01)
Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK’s largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world’s leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We’ve been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk
General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate’s response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
General Instructions for Marking

1. The total number of marks for the paper is 75

2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: Method marks are awarded for ‘knowing a method and attempting to apply it’, unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations
 - These are some of the traditional marking abbreviations that will appear in the mark schemes.
 - bod – benefit of doubt
 - ft – follow through
 - the symbol \(\checkmark \) will be used for correct ft
 - cao – correct answer only
 - cso - correct solution only. There must be no errors in this part of the question to obtain this mark
 - isw – ignore subsequent working
 - awrt – answers which round to
 - SC: special case
 - oe – or equivalent (and appropriate)
 - d... or dep – dependent
 - indep – independent
 - dp decimal places
 - sf significant figures
 - * The answer is printed on the paper or ag- answer given
 - or d... The second mark is dependent on gaining the first mark

4. All A marks are ‘correct answer only’ (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a
misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
Question 1. (a)

<table>
<thead>
<tr>
<th>Store</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>Difference</th>
<th>July-Jan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33</td>
<td>63</td>
<td>121</td>
<td>-60</td>
<td>-54</td>
<td>24</td>
<td>-19</td>
<td>33</td>
<td>(\bar{d} = \frac{141}{8} = (\pm)17.625)</td>
<td></td>
</tr>
</tbody>
</table>

\(s_d^2 = \frac{8}{7}\left(\frac{28241}{8} - 17.625^2\right) = 3679.4\ldots\)

or

\(s_d^2 = \frac{1}{7}\left(28241 - \left(\frac{141}{8}\right)^2\right) = 3679.4\ldots\)

To test \(H_0: \mu_d = 0\) against \(H_1: \mu_d > 0\) (o.e.)

Test stat

\[t = \frac{17.625 - 0}{\sqrt{\frac{3679.4}{8}}} = 0.8218\ldots\]

Critical value, \(t_c = 1.895\)

Not in critical region therefore insufficient reason to reject \(H_0\)

No significant evidence that on average stores sell more lottery tickets in July than in January.

Notes

(a)

1st B1 for differences all correct (o.e.)

1st M1 attempt to find \(\bar{d} = \frac{\sum \text{"their } d\text{"}}{8}\)

2nd M1 attempting \(s_d\) or \(s_d^2 = \frac{1}{7}\left(\sum \text{"their } d^2\" - \left(\sum \text{"their } d\text{"}\right)^2\right)\)

2nd B1 both correct in terms of \(\mu\) or \(\mu_d\) (allow a defined symbol) condone \(\mu_{July-Jan}\)

3rd M1 for attempting the correct test statistic \(\frac{\bar{d}}{s_d/\sqrt{8}}\)

1st A1cso awrt 0.822 with no errors.

3rd B1 alternate method, \(p\) value of 0.219. Allow 2.365 for 2-tail test

Final A1 need conclusion in context, need tickets July and January, ft their test stat and critical value

NB difference of 2 means test gains no marks

(b)

B1 need differences to be normally distributed, not just normal distribution
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. (a)</td>
<td>$n = 8 \sum x = 843 \sum x^2 = 89211$
 $\therefore \bar{x} = 105.375$
 $s^2 = \frac{8}{7} \left(\frac{89211}{8} - 105.375^2 \right) = 54.267\ldots$
 or
 $s^2 = \frac{1}{7} \left(89211 - 843^2 \right) = 54.267\ldots$
 Confidence interval is given by
 $\frac{7 \times 54.267\ldots}{14.067} < \sigma^2 < \frac{7 \times 54.267\ldots}{2.167}$
 $\therefore 27.004\ldots < \sigma^2 < 175.299\ldots$
 $5.1966\ldots < \sigma < 13.240\ldots$</td>
</tr>
<tr>
<td>(b)</td>
<td>Need to assume underlying Normal distribution for weights of blocks of cheese.</td>
</tr>
<tr>
<td>(c)</td>
<td>Lower limit of CI is > 5 g suggests that Fred needs training.</td>
</tr>
<tr>
<td>(d)</td>
<td>To test $H_0 : \mu = 100 , \ H_1 : \mu \neq 100 \ (\mu > 100)$
 where μ is the mean weight of blocks of cheese
 Test statistic $t = \frac{102.6 - 100}{\sqrt{\frac{19.4}{29}}} = 2.6399\ldots$</td>
</tr>
<tr>
<td></td>
<td>Critical value(s): $t_{0.025} = (\pm) 1.729 (1.328)$</td>
</tr>
<tr>
<td></td>
<td>In critical region, therefore significant evidence to reject H_0 and accept H_1
 Significant evidence that the mean weight of the blocks of cheese is not 100 g (more than 100g)</td>
</tr>
</tbody>
</table>

Total 14

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) 1st M1 attempting s or s^2 1st A1 awrt 54.3</td>
</tr>
<tr>
<td>2nd M1 for $\frac{7s^2}{\chi^2}$ 1st A1 awrt 54.3</td>
</tr>
<tr>
<td>B1 14.067 & 2.167</td>
</tr>
<tr>
<td>3rd M1d Dept on previous M mark. Rearranging leading to interval for σ - must square root A1 awrt 5.20 and 13.2 (allow 5.2)</td>
</tr>
<tr>
<td>NB a correct interval gains full marks</td>
</tr>
<tr>
<td>(c) B1ft on their CI must have Fred/He/employee (do not allow employees) and training. They must have an interval in part(a)</td>
</tr>
<tr>
<td>(d) 1st B1 Both hypotheses with μ. Allow one-tail</td>
</tr>
<tr>
<td>1st M1 $\frac{102.6 - 100}{s or s^2} \sqrt{\frac{20}{s}}$ 1st A1 awrt 2.64</td>
</tr>
<tr>
<td>2nd B1 allow p value of 0.0161 in place of critical value. CV must follow from H1 2nd A1ft a correct statement – do not allow contradicting non context statement. 3rd B1cso need correct conclusion in context containing the words in bold from a fully correct solution. For one tail need “more than 100g”</td>
</tr>
</tbody>
</table>
Question 3.

(a)

\[s_p^2 = \frac{12\times161 + 9\times48}{13 + 10 - 2} = \frac{2364}{21} = 112.57 \ldots = 112.6 \text{ (1dp)} \]

(b)

To test \(H_0 : \mu_a = \mu_a \) against \(H_1 : \mu_a \neq \mu_a \) (o.e.)

Test stat, \(t = \frac{195 - 186}{\sqrt{112.57 \ldots \left(\frac{10}{10} + \frac{11}{11}\right)}} = \pm 2.016 \ldots \) (awrt2.02)

Critical values, \(t_{21} = (\pm)1.721 \)

In critical region, therefore significant evidence to reject \(H_0 \) and accept \(H_1 \)

Evidence of difference in mean **arm span** of adult male **swimmers** and adult male **athletes** or No evidence to support Ali’s claim.

(c)

To test \(H_0 : \sigma_a^2 = \sigma_a^2 \) against \(H_1 : \sigma_a^2 \neq \sigma_a^2 \)

Test stat, \(F_{12,9} = \frac{161}{48} = 3.354 \ldots \left(\frac{1}{F_{12,9}} = \frac{48}{161} = 0.2981 \ldots \right) \)

Critical value, \(F_{12,9} = 3.07 \) (0.3257…)

In critical region, therefore significant evidence to reject \(H_0 \) and accept \(H_1 \)

Evidence of difference in **variance** of arm span of adult male swimmers and adult male athletes or the data supports Bea’s belief

(d)

Should do test for variance first as **equal variances** is necessary assumption for \(t \) test for means

but is **not supported** in (c), so result in (b) is invalid.

Notes

(a) M1 for \(\frac{12\times161 + 9\times48}{13 + 10 - 2} \)

A1cso need to get awrt112.57 or \(\frac{2364}{21} \) then write 112.6

(b) M1 \(\frac{195 - 186}{\sqrt{112.57 \ldots \left(\frac{10}{10} + \frac{11}{11}\right)}} \)

2\text{nd} B1 alternate method, \(p \) value of 0.0566 in place of critical value

Final A1 requires correct conclusion in context

(c) 1\text{st} B1 allow \(H_0 : \sigma_a = \sigma_a \) against \(H_1 : \sigma_a \neq \sigma_a \)

M1 allow \(\frac{161^2}{48^2} \) if they write the formula down

Final A1 requires correct conclusion

(d) 1\text{st} B1 equal variances is necessary assumption (may be implied by saying not equal)

2\text{nd} B1d but not supported in (c)/(variances not equal) therefore (b) result invalid

<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. (a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(d)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Question Number</td>
<td>Scheme</td>
<td>Marks</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>4. (a)</td>
<td>Power function (= \text{P}(H_0 \text{ rejected}) = P(X_1 \geq 2) + P(X_1 = 1)\times P(X_2 \geq 1))</td>
<td>M1A1</td>
</tr>
<tr>
<td></td>
<td>(= 1-(1-p)^6 - 6p(1-p)^5 + 6p(1-p)^5 \times (1-(1-p)^6))</td>
<td>A1cso</td>
</tr>
<tr>
<td></td>
<td>(= 1-(1-p)^5 - 6p(1-p)^4 + 6p(1-p)^4 - 6p(1-p)^{11})</td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>Size of test is value of power function when (p = 0.05)</td>
<td>M1A1</td>
</tr>
<tr>
<td></td>
<td>Size of test (= 1-0.95^6 - 6 \times 0.05 \times 0.95^{11} = 0.094268 \ldots) (awrt 0.0943)</td>
<td></td>
</tr>
<tr>
<td>(c)</td>
<td>(\text{E[number of eggs inspected]} = 12 \times P(X_1 = 1) + 6 \times P(X_1 \neq 1))</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>(= 12 \times 6 \times 0.1 \times 0.9^5 + 6 \times (1-(6 \times 0.1 \times 0.9^5)))</td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td>(= 8.1257 \ldots) (awrt 8.13)</td>
<td>A1</td>
</tr>
<tr>
<td>(d)</td>
<td>(\text{P(} \text{Type II error }</td>
<td>p = 0.1) } = 1-(\text{value of power function when } p = 0.1))</td>
</tr>
<tr>
<td></td>
<td>(\text{P(} \text{Type II error }</td>
<td>p = 0.1) } = 1-(1-0.9^6 - 6 \times 0.1 \times 0.9^{11}) = 0.7197 \ldots) (awrt 0.720)</td>
</tr>
<tr>
<td>(e)</td>
<td>Prob of Type II error, accepting (p = 0.05) when it is actually 0.1, unacceptably high, is large, therefore not a good test.</td>
<td>B1</td>
</tr>
</tbody>
</table>

Notes

- **(a)** M1 for \(P(X_1 \geq 2) + P(X_1 = 1) \times P(X_2 \geq 1) \) or \(1-(P(X_1 = 0) + P(X_1 = 1) \times P(X_2 = 0)) \) oe or a correct line of working
- A1 a correct line of working before the final answer
- A1 fully correct solution no errors.
- **(b)** M1 attempt to subst 0.05 into (a)
- **(c)** M1 for \(12 \times P(X_1 = 1) + 6 \times P(X_1 \neq 1) \)
- A1 \(12 \times 6 \times p \times 0.9(1-p)^5 + 6 \times (1-6 \times p \times (1-p)^5) \)
- **(d)** M1 \(1-(1-p)^6 - 6 \times p \times (1-p)^{11} \)
- **(e)** B1 idea that the Probability of a Type II error is too high or the power is too low so the test is not good/powerful or test needs changing
<table>
<thead>
<tr>
<th>Question Number</th>
<th>Scheme</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 (a)</td>
<td>(\bar{x} = \frac{\sum x}{n} = \frac{1116}{9} = 124)</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>(s^2 = \frac{9}{8} \left(\frac{138728}{9} - 124^2 \right) = 43)</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>Or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(s^2 = \frac{1}{8} \left(138728 - \frac{1116^2}{9} \right) = 43)</td>
<td>B1</td>
</tr>
<tr>
<td>(b)</td>
<td>Test stat</td>
<td>M1A1</td>
</tr>
<tr>
<td></td>
<td>(\chi^2 = \frac{8 \times 43}{25} = 13.76)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical value</td>
<td>B1</td>
</tr>
<tr>
<td></td>
<td>(\chi^2 = 15.507)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Therefore not in critical region, insufficient evidence to reject (H_0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>There is evidence at the 5% level that the company’s claim is supported</td>
<td>B1d</td>
</tr>
<tr>
<td>(c)</td>
<td>CI given by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\frac{11 \times 8.17}{21.920} < \sigma^2 < \frac{11 \times 8.17}{3.816})</td>
<td>M1</td>
</tr>
<tr>
<td></td>
<td>Therefore</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4.0999... < \sigma^2 < 23.55...) awrt 4.10 and 23.6</td>
<td>A1</td>
</tr>
<tr>
<td>(d)</td>
<td>(\sigma^2 = 25) is not in CI which suggests Gurdip’s (his) claim may not be true.</td>
<td>B1ft</td>
</tr>
</tbody>
</table>

Total 9

Notes

(a) B1 124
B1 43
(b) M1 \(\frac{8 \times \text{their 43}}{25} \)
A1 awrt 13.8
B1 15.507
B1 dep on previous M1 being awarded. Allow the standard deviation of the IQ scores is 5 oe. Must have IQ
(c) M1 \(\frac{11 \times 8.17}{3.816 \text{ or } 21.92} \)
A1 both correct
(d) B1ft their interval from part(c). Gurdip’s claim may not be true
NB, no interval in (c) then B0
6. (a)
\[E[A] = \frac{1}{2} (E[X_1] + E[X_2] + E[X_3] + E[Y]) = \frac{1}{2} (3 \times \frac{\mu}{3} + 2 \times \frac{\mu}{2}) = \mu \]

Therefore \(A \) is an unbiased estimator

\[E[B] = \frac{3E[X_1]}{2} + \frac{2E[Y]}{3} = \frac{3}{2} \times \frac{\mu}{3} + \frac{2}{3} \times \frac{\mu}{2} = \frac{5\mu}{6} \]

Therefore \(B \) is biased with bias \((-\frac{\mu}{6}) \)

\[E[C] = \frac{1}{3} (3E[X_1] + 4E[Y]) = \frac{1}{3} \left(\frac{3\mu}{3} + \frac{4\mu}{2} \right) = \mu \]

Therefore \(C \) is an unbiased estimator

(b) Best estimator is unbiased estimator with least variance

\[\text{Var} (A) = \frac{1}{4} (\text{Var} X_1 + \text{Var} X_2 + \text{Var} X_3 + \text{Var} Y_1 + \text{Var} Y_2) \]

\[= \frac{1}{4} \left(3 \times 3\sigma^2 + 2 \times \frac{\sigma^2}{2} \right) = \frac{5\sigma^2}{2} \]

\[\text{Var} (C) = \frac{1}{9} (9\text{Var} X_1 + 16\text{Var} Y_1) = \frac{1}{9} \left(9 \times 3\sigma^2 + 16 \times \frac{\sigma^2}{2} \right) = \frac{35\sigma^2}{9} \]

Therefore \(A \) is a better estimator of \(\mu \) (smaller variance)

(c)
\[E[D] = \frac{1}{k} \left(2n \times \frac{\mu}{3} + n \times \frac{\mu}{2} \right) = \mu \]

\[k = \frac{2n}{3} + \frac{n}{2} = \frac{7n}{6} \]

(d)
\[\text{Var} (D) = \frac{1}{k^2} \left(2n \times 3\sigma^2 + n \times \frac{\sigma^2}{2} \right) = \frac{1}{k^2} \times \frac{13n\sigma^2}{2} \]

\[\text{Var} (D) = \frac{36}{49n^2} \times \frac{13n\sigma^2}{2} = \frac{234\sigma^2}{49n} \]

Therefore \(\text{Var} D \to 0 \) as \(n \to \infty \), therefore \(D \) is a consistent estimator

(e) Want \(\frac{234\sigma^2}{49n} < \frac{5\sigma^2}{2} \)

Therefore \(\frac{234}{49} \times \frac{2}{5} < n \)

\[n > 1.910... \]

So minimum value is \(n = 2 \)

Total 18
<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
</table>
| **(a)** | M1 for a correct method for E(A) or E(B) or E(C)
A1 for each correct expectation with a correct method
B1ft bias of B, condone missing – sign. Do not allow a bias of 0 |
| **(b)** | M1 Use of \(\text{Var}(aX) = a^2 \text{Var}(X) \) and subst \(3\sigma^2 \) for \(\text{Var}(X) \) and \(\frac{\sigma^2}{2} \) for \(\text{Var}(Y) \)
A1 for each correct variance
B1dft their variances. Dep on m1 being awarded. If no variances given then B0 |
| **(c)** | M1 attempts \(E(D) \) and puts = to \(\mu \) (may be implied)
A1 for \(E(D) \) |
| **(d)** | M1 for \(\frac{1}{k^2} \left(2n \times 3\sigma^2 + n \times \frac{\sigma^2}{2} \right) \) or \(\frac{1}{k^2} \times 13n\sigma^2 \)
M1d for subst in \(k \)
A1 Correct \(\text{Var}(D) \)
A1dd Need correct reason for being a consistent estimator dep on previous method marks being awarded |
| **(e)** | M1 for forming an inequality with their \(\text{Var}(D) < \) their best estimator leading to \(n \) |