Candidates answer on the Question Paper.

OCR SUPPLIED MATERIALS:
None

OTHER MATERIALS REQUIRED:
Geometrical instruments
Tracing paper (optional)

WARNING
No calculator can be used for this paper

READ INSTRUCTIONS OVERLEAF
INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the boxes on the first page. Please write clearly and in capital letters.

• Use black ink. HB pencil may be used for graphs and diagrams only.

• Answer ALL the questions.

• Read each question carefully. Make sure you know what you have to do before starting your answer.

• Your answers should be supported with appropriate working. Marks may be given for a correct method even if the answer is incorrect.

• Write your answer to each question in the space provided. Additional paper may be used if necessary but you must clearly show your candidate number, centre number and question number(s).

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [] at the end of each question or part question.

• Your quality of written communication is assessed in questions marked with an asterisk (*).

• The total number of marks for this paper is 60.
Area of trapezium = \(\frac{1}{2}(a + b)h \)

Volume of prism = (area of cross-section) \(\times \) length

In any triangle \(\triangle ABC \)

Sine rule \(\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \)

Cosine rule \(a^2 = b^2 + c^2 - 2bc \cos A \)

Area of triangle = \(\frac{1}{2} abc \sin C \)

Volume of sphere = \(\frac{4}{3} \pi r^3 \)

Surface area of sphere = \(4\pi r^2 \)

Volume of cone = \(\frac{1}{3} \pi r^2h \)

Curved surface area of cone = \(\pi rl \)

The Quadratic Equation
The solutions of \(ax^2 + bx + c = 0 \), where \(a \neq 0 \), are given by

\[
x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}
\]
1 Sukrit and Anna are playing a game called ‘Make 100’. Sukrit says a 2-digit number. Anna says the number that has to be added to this to make 100.

For example, if Sukrit says 60, Anna says 40 as $60 + 40 = 100$.

(a) Complete these two games.

Sukrit says 36, Anna says ____________

Sukrit says 81, Anna says ____________

(b) They play the game 12 times.

What should be the total of ALL their numbers?

(b) _________________ [1]
(c) In another game of ‘Make 100’, their two numbers have a DIFFERENCE of 50.

What are their two numbers?

(c) __________ and __________ [1]
2 The diagram below shows triangle T on a grid.

(a) Reflect triangle T in the line \(y = -1 \).
Label the image A. [2]

(b) Rotate triangle T 180° about the point (0, 0).
Label the image B. [2]
(c) Triangle T is transformed by four translations given by the following vectors.

\[
\begin{pmatrix} 15 \\ -6 \end{pmatrix} \text{ then } \begin{pmatrix} 22 \\ 9 \end{pmatrix} \text{ then } \begin{pmatrix} -15 \\ 6 \end{pmatrix} \text{ then } \begin{pmatrix} -17 \\ -9 \end{pmatrix}
\]

Draw the image of triangle T after these four translations. Label the image C. [3]
3 Robin sells ice creams at a market on Thursdays and Saturdays. He records how many ice creams he sells on each of these days for 10 weeks. His results are shown in the following table.

<table>
<thead>
<tr>
<th>Week (Wk)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thursday (T)</td>
<td>56</td>
<td>60</td>
<td>62</td>
<td>67</td>
<td>66</td>
<td>64</td>
<td>72</td>
<td>74</td>
<td>77</td>
<td>78</td>
</tr>
<tr>
<td>Saturday (S)</td>
<td>88</td>
<td>84</td>
<td>81</td>
<td>63</td>
<td>78</td>
<td>85</td>
<td>80</td>
<td>84</td>
<td>86</td>
<td>83</td>
</tr>
</tbody>
</table>

Number of ice creams sold
(a) Complete the time series graph.
The first 7 weeks have been done for you. [2]

(b) Look at the time series graph.

Make two comments about Robin’s data.

(1) __
 __

(2) __
 __ [2]
4 Decide whether each of the following is an equation, a formula, an identity or an expression. For each one, put a tick (√) in the correct column. [4]

<table>
<thead>
<tr>
<th>Expression</th>
<th>Formula</th>
<th>Identity</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V = \frac{1}{3} \pi r^2 h)</td>
<td>(3n + 5 + 5n - 7 \equiv 8n - 2)</td>
<td>(6n - 4 = 2n)</td>
<td>(\pi r^2)</td>
</tr>
</tbody>
</table>
5. Draw at least 10 crosses (\times) on each of the following grids to produce scatter graphs that show the following.

- **Strong Negative Correlation**

- **No Correlation**
6 (a) Complete the following table for \(2x + 3y = 12\) by filling in the three missing numbers. [2]

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>4.5</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

(b) On the following grid draw the graph of \(2x + 3y = 12\) for \(0 \leq x \leq 6\). [2]
(c) Use your graph to find the gradient of the line
\[2x + 3y = 12.\]
7 A nail is made from a volume of 5.8 cm3 of iron. The density of iron is 7.9 g/cm3.

Use the following formula to find the mass of the nail.

mass = density \times volume

______________ g [4]
8 (a) (i) Solve the following inequality.

\[2m + 6 > -4 \]

(ii) Represent your answer to part (a)(i) on the following number line.

(b) The following diagram represents the solution of another inequality.

What is the smallest integer that \(x \) can be?

(b) ____________________ [1]
9 (a) The mass of the Earth is approximately 10^{21} tonnes.
There are 1000 kilograms in one tonne.

What is the mass of the Earth in kilograms?
Give your answer using indices.

(a) ______________ kg [2]

(b) The mass of the planet Mercury is 10^{23} kg.
The mass of the planet Jupiter is 10^{27} kg.

Complete the sentence below.

The mass of Jupiter is ______________________
times the mass of Mercury. [2]
(c) Work out $100^{-\frac{1}{2}}$.
10 Work out.

\[1\frac{2}{3} ÷ 1\frac{3}{4}\]
Chanre sews edging onto curtains and blinds. She is paid £C for each pair of curtains and £B for each set of blinds.

On Monday she completes 10 pairs of curtains and 2 sets of blinds. She is paid £35 for this.

This gives the equation \(10C + 2B = 35\).

(a) On Tuesday she completes 5 pairs of curtains and 6 sets of blinds. She is paid £30 for this.

Write an equation to show this information.

(a) __________________________ [1]
(b) Solve the two simultaneous equations algebraically to find the amount she is paid for each pair of curtains and each set of blinds.

(b) Curtains £ __________________

Blinds £ __________________ [3]
12 OACB is a parallelogram.
\(\overrightarrow{OA} = a \) and \(\overrightarrow{OB} = b \).
M is the midpoint of AB.
This is shown on the following diagram.

(a) Find, in terms of a and b, these vectors.

(i) \(\overrightarrow{OC} \)

(a)(i) __________________ [1]

(ii) \(\overrightarrow{AB} \)

(ii) __________________ [1]
(iii) \overrightarrow{OM}

(b) Use your answers to write TWO conclusions about points O, M and C.

(1) ________________________________

(2) ________________________________

_____________________________________[2]
13* Chord PQ is parallel to tangent TRU. This is shown on the following diagram.

NOT TO SCALE

Calculate the size of angle \(e \). Give a geometrical reason for each stage of your working. [5]
END OF QUESTION PAPER
Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.