Surname
First name(s)

Centre Number	Candidate Number
0	

GCSE

五
C300UA0-1

TUESDAY, 5 NOVEMBER 2019 - MORNING

MATHEMATICS - Component 1
Non-Calculator Mathematics HIGHER TIER

2 hours 15 minutes

ADDITIONAL MATERIALS

The use of a calculator is not permitted in this examination. A ruler, protractor and a pair of compasses may be required.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
You may use a pencil for graphs and diagrams only.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all the questions in the spaces provided.
If you run out of space, use the continuation pages at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

You should give details of your method of solution when appropriate.
Unless stated, diagrams are not drawn to scale.
Scale drawing solutions will not be acceptable where you are asked to calculate.
The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the need for good English and orderly, clear presentation in your answers.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	3	
2.	4	
3.	3	
4.	7	
5.	6	
6.	4	
7.	3	
8.	6	
9.	2	
10.	6	
11.	3	
12.	7	
13.	11	
14.	5	
15.	6	
16.	6	
17.	5	
18.	5	
19.	4	
20.	7	
21.	4	
22.	8	
23.	5	
Total	120	

Formula list

Area and volume formulae

Where r is the radius of the sphere or cone, l is the slant height of a cone and h is the perpendicular height of a cone:

$$
\begin{gathered}
\text { Curved surface area of a cone }=\pi r l \\
\text { Surface area of a sphere }=4 \pi r^{2} \\
\text { Volume of a sphere }=\frac{4}{3} \pi r^{3} \\
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
\end{gathered}
$$

Kinematics formulae

Where a is constant acceleration, u is initial velocity, v is final velocity, s is displacement from the position when $t=0$ and t is time taken:

$$
\begin{gathered}
v=u+a t \\
s=u t+\frac{1}{2} a t^{2} \\
v^{2}=u^{2}+2 a s
\end{gathered}
$$

1. The diagram shows a cylinder.

Diagram not drawn to scale

On the 1 centimetre grid below, draw accurately:

- the plan of the cylinder,
- the side elevation of the cylinder.

Plan

2. Gita is carrying out a survey to find out what people think of a proposed new road for Redville.
(a) Gita decides to ask the first 20 people she meets at Redville bus station between 8 a.m. and $9 \mathrm{a} . \mathrm{m}$. on a Monday morning.

Give two reasons why this plan is unlikely to produce reliable results.
Reason 1:

Reason 2:
(b) Here is a question from Gita's survey:

Make two criticisms of Gita's question.
Criticism 1:

Criticism 2:
3. In 2018, the total volume of ice in the Greenland ice sheet was $2.99 \times 10^{6} \mathrm{~km}^{3}$. The total surface area of the ice sheet was $1.799 \times 10^{6} \mathrm{~km}^{2}$.

Assuming that the depth of the ice was constant for the whole ice sheet, estimate the depth of the ice in 2018.
You must state the units of your answer.
\qquad

4. (a) Solve $5 x-1=3 x+4$.

\qquad
\qquad
\qquad
\qquad
(b) Solve the following simultaneous equations.

$$
\begin{aligned}
2 x+y & =8 \\
x-y & =1
\end{aligned}
$$

5. (a) Delyth borrows $£ 3450$ from a family member who charges her 2% per year simple interest.
She pays all the money back in one payment after 1 year 3 months.
How much interest does Delyth pay?

Examiner

Interest £

(b) Aiden invested $£ 65$ for 5 years at a rate of $r \%$ simple interest per year.

No extra money was paid in and no money was withdrawn during these 5 years.
At the end of the 5 years he received $£ 9.75$ interest in total.
Find the value of r.
6. Shania has two pieces of ribbon.

One piece is $5 \frac{1}{4}$ metres long.
The difference between the lengths of the two pieces is $2 \frac{9}{20}$ metres.
Work out the two possible lengths of the other piece of ribbon.
Give each of your answers as a mixed number in its simplest form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7.

Diagram not drawn to scale

Find the value of x.
You must show all your working.
\qquad
\qquad
8. Huw has a maths test.
(a) For the first question, Huw divides 752 by a whole number.

His answer, which is correct, is 25 remainder 27.
What whole number did Huw divide by?
\qquad
\qquad
\qquad
\qquad
(b) The second question is:

```
The only food provided for guests at Seaview Hotel is
breakfast. The hotel has enough food to make breakfast for
20 guests for 6 days.
How long would the food last 30 guests?
You may assume each guest eats the same amount of food
for breakfast.
```

Here is Huw's working.

(i) Without working out the correct answer, explain why Huw's answer of 9 days is incorrect.
\qquad
(ii) Work out the correct answer.
\qquad
\qquad
\qquad
\qquad
\qquad
9. The diagram shows a dartboard with 4 sectors of equal size.

Sanjeev throws 3 darts which all hit this dart board.
Each dart is equally likely to hit any sector of the dart board.
He multiplies his three numbers to find his score.
Work out the probability that his score is an odd number.
\qquad
\qquad
\qquad
10.

Diagram not drawn to scale

The diagram shows a garden which has:

- an L shaped area of grass,
- a rectangular flowerbed and pond,
- a square compost heap.

The length of each side of the compost heap is 1.2 m .
The ratio of the length of the compost heap to the length of the hedge is $2: 11$.
The length of the gate is 2 m .
The length of the gate is $\frac{1}{4}$ of the length of the pond.
The area of the pond is $28 \mathrm{~m}^{2}$.
The perimeter of the flowerbed is the same as the perimeter of the pond.
Find the area of the grass.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11. A scientist wants to find out how many coots there are on a lake.

One Monday morning, she captures a random sample of 48 coots and tags them.
She then releases them back onto the lake.
The following Monday morning, she captures a second random sample of 30 coots and counts the number that are tagged.

The scientist finds that 20 of the coots in the second sample are tagged.

Assume that the number of coots on the lake remains constant.
How many coots are there likely to be on the lake?
Show calculations to justify your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

12.

The diagram shows the graph of a straight line, $A B$.
(a) Find the equation of this line.

Give your answer in the form $y=m x+c$.

$$
y=.
$$

(b) Find the equation of the perpendicular bisector of the line $A B$.
\qquad
13. The table shows a summary of the time, in seconds, it takes each of 32 people to complete a logic puzzle.

Time, t (seconds)	$t \leqslant 25$	$t \leqslant 30$	$t \leqslant 35$	$t \leqslant 40$	$t \leqslant 45$	$t \leqslant 50$	$t \leqslant 55$	$t \leqslant 60$
Cumulative frequency	0	3	8	16	21	24	29	32

(a) Complete the cumulative frequency diagram below to show these results.

(b) (i) How many people took more than 40 but not more than 50 seconds to complete
the puzzle?
(ii) Complete the inequality to show the modal class.
$<t \leqslant$ \qquad
(c) Eddie uses the data from part (a) to obtain estimates and draw a box plot.

He also knows that the fastest time is 26 seconds.
Eddie also assumes that the slowest time is 60 seconds.
(i) Draw Eddie's box plot.

(ii) Explain why Eddie's assumption may not be correct.
\qquad
\qquad
\qquad
(iii) Eddie's assumption is not actually correct.

What effect does this have on each of the range and the interquartile range?

Effect on the range: \qquad
\qquad

Effect on the interquartile range:
14. (a) Find the value of $\left(\frac{1}{5}\right)^{-3}$.
\qquad
(b) Find the value of $256^{\frac{3}{4}}$.
(c) Estimate the value of $50^{\frac{1}{2}}$.
15. Vera has a pot containing 4 red grapes and 6 green grapes.

She takes a grape at random and eats it. She then takes another grape at random and eats it.
(a) Complete the probability tree to show this information.

(b) Work out the probability that the second grape Vera eats is green.
\qquad
\qquad
\qquad
\qquad
\qquad
16. It is known that y varies inversely as the cube root of x and that $y=2$ when $x=27$.
(a) Find a formula for y in terms of x.
(b) Using your answer to part (a), find
(i) y when $x=1000$,
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) x when $y=3$.
\qquad
\qquad
\qquad
17. (a)

$$
V_{0}=10000
$$

$$
V_{n+1}=0.8 V_{n} \text { where } n \geqslant 0
$$

This iterative formula can be used to work out the value V_{n} of a particular type of car when it is n years old.
(i) Show that a car of this type that is 1 year old is worth $£ 8000$.
\qquad
(ii) Use this formula to find the value of a car of this type that is 3 years old.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Value is $£$ \qquad
(b)

A newly built house is worth $£ 240000$ and is expected to increase in value by 2% each year.

Complete the following iterative formula to show this information.

$$
\begin{aligned}
& V_{0}= \\
& V_{n+1}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots . . . V_{n} \text { where } n \geqslant 0
\end{aligned}
$$

18. (a)

The diagram shows a sketch graph of a quadratic function.
Find the equation of this curve.
$y=$

The diagram shows the graph of the curve $y=k^{x}$.
Find the value of the positive integer k.
$k=$
19. (a) A 5-course banquet has 3 options for each course.

The number of possible 5 -course meals is m.
Find the value of m.

$$
m=
$$

(b) The caterer for the banquet decides to change the menu so that there are only 2 options for the first course. The options for the other courses remain the same.

The number of possible 5-course meals is now pm .
Find the value of p.
$p=$ \qquad

BLANK PAGE

Wit $\sqrt{\text { ma }}+\sqrt{275}$ in form $k \sqrt{11}$ wiere k is iner
(b) Show that $\frac{(\sqrt{3}-1)^{2}}{\sqrt{3}}$ can be written as $c \sqrt{3}+d$, where c and d are values to be found.
Examiner only
(c) $2 \sqrt{x}-\sqrt{y}=0$

Find a value for x and a value for y so that \sqrt{x} and \sqrt{y} are surds.

$$
x=\ldots . .
$$

21. In this question, all lengths are in centimetres.

A circle has equation $x^{2}+y^{2}=49$.
Points A, B and C all lie on this circle.
Their co-ordinates are $A(a, 0), B(b, 0)$ and $C(0, c)$, where $a<0, b>0$ and $c>0$.
(a) Find the length of the line $A B$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
A B=
$$ cm

(b) The tangent to the circle at A and the tangent to the circle at C meet at the point T. Find the coordinates of T. ., ,)
22. The function f is defined, for $x \neq 1$, by $f(x)=\frac{7}{x-1}$.
(a) (i) Explain why $x \neq 1$ for this function.
\qquad
\qquad
(ii) Show that $f^{-1}(x)=\frac{a}{x}+b$, where a and b are integers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The functions g and h are defined for all real x by

$$
\begin{aligned}
& g(x)=\sqrt[3]{x+1} \\
& h(x)=9 x^{3}
\end{aligned}
$$

Solve $h g(x)=f(x)$.
23.

The diagram shows the graph of $y=(x-4)^{2}+1$ for $0 \leqslant x \leqslant 8$.
(a) Using four vertical strips of equal width, estimate the area of the shaded region.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Is your answer to part (a) an underestimate or an overestimate?

Explain how you decide.
\qquad
\qquad

For continuation

For continuation only.

For continuation

BLANK PAGE

