GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW)
MATHEMATICS
UNIT 3 PURE MATHEMATICS B 1300U30-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL MATHEMATICS

UNIT 3 PURE MATHEMATICS B

SUMMER 2022 MARK SCHEME

Q Solution

$1 \quad 6\left(1+\tan ^{2} x\right)-8=\tan x$
$a \tan ^{2} x+b \tan x+c=0$
$6 \tan ^{2} x-\tan x-2=0$
$(A \tan x+B)(C \tan x+D)=0$
$(3 \tan x-2)(2 \tan x+1)=0$
$\tan x=-\frac{1}{2}, \frac{2}{3}$
$\tan x=\frac{2}{3}, x=33.69^{\circ}, 213.69^{\circ}$
$\tan x=-\frac{1}{2}, x=153.43^{\circ}$,

$$
x=333.43^{\circ}
$$

Mark Notes

M1 use of $\sec ^{2} x=1+\tan ^{2} x$
Must be seen for M1
$\mathrm{m} 1 \quad A C=a$ and $B D=c, c \neq 0$
oe

A1 cao

B1 first 2 correct solutions
Condone $0.588^{\text {c }}, 3.730^{\text {c }}$
B1 $3^{\text {rd }}$ correct solution
Condone $2.678^{\text {c }}$
B1 4th correct solution
Condone 5.820 ${ }^{\text {c }}$

Notes: If one or two roots obtained for $\tan x$, even if incorrectly obtained, full follow through from these values for B1 B1 B1, provided one +ve and one -ve root. If only one sign obtained, only B1 available for one pair of correct angles.

Do not follow through for sin, cos or anything else.
Ignore all roots outside range $0^{\circ} \leq x \leq 360^{\circ}$.
For $5^{\text {th }}, 6^{\text {th }}, 7^{\text {th }}$ extra root within range, -1 mark each extra root.
If all answers in radians, but radians not specified, penalise -1.
Accept all answers correctly rounded to the nearest whole number or better.

Q Solution

2(a) $y=x^{3} \ln (5 x)$

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2} \ln (5 x)+x^{3} \frac{5}{5 x}
$$

M1 $f(x) \ln (5 x)+x^{3} g(x)$
M0 if $f(x)=0$ or1 or $g(x)=0$ or 1
A1 $\quad 3 x^{2} \ln (5 x)$
A1 $x^{3} \frac{5}{5 x}$
ISW

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2} \ln (5 x)+x^{2}=x^{2}(3 \ln (5 x)+1)
$$

2(b) $y=(x+\cos 3 x)^{4}$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=4(x+\cos 3 x)^{3}(1-3 \sin 3 x)$
M1 $\quad 4(x+\cos 3 x)^{3} f(x)$
M0 if $f(x)=1$
A1 $f(x)=(1-3 \sin 3 x)$
Condone absence of brackets
for M1 A0, unless corrected for A1.
ISW

Mark Notes

3

$$
O B\left(=\frac{4}{\cos \frac{\pi}{3}}\right)=8 \text { or } O A\left(=\frac{4}{\tan 30^{\circ}}\right)=4 \sqrt{3} \text { B1 } \quad \text { si }(O A=6.928 \ldots)
$$

Area $O A B=\frac{1}{2} \times 4 \times 8 \sin \frac{\pi}{3}$

$$
=8 \sqrt{3}=13.856 \ldots
$$

Area $O B C=\frac{1}{2} \times 8 \times 8 \times \frac{\pi}{3}$

$$
=\frac{32 \pi}{3}=33.510 \ldots
$$

Required area $O A B C=47.37\left(\mathrm{~m}^{2}\right)$

M1 Use of $A=\frac{1}{2} r^{2} \theta$
Or $A=\frac{1}{6} \pi r^{2}$
M1 Use of $A=\frac{1}{2} \times A B \times O A$
ft $O B, O A$
A1 cao Must be to 2dp

Q Solution

$4 \quad \frac{a}{1-r}=120$
$\frac{a}{1-4 r^{2}}=112 \frac{1}{2}$
$120(1-r)=\frac{225}{2}\left(1-4 r^{2}\right)$
$900 r^{2}-240 r+15=0$
or $a^{2}-208 a+10800=0$
$60 r^{2}-16 r+1=0$
$(6 r-1)(10 r-1)=0$
$r=\frac{1}{6}, r=\frac{1}{10}$
$a=100, a=108$

Mark Notes

B1 si

B1 si

M1 or elimination of r
m1 attempt to solve their quadratic equation Implied by correct answers

A1 One correct pair, cao

A1 all correct, cao

Q Solution

5(a) $\quad\left(\frac{6 x+4}{(x-1)(x+1)(2 x+3)}=\right) \frac{A}{(x-1)}+\frac{B}{(x+1)}+\frac{C}{(2 x+3)} \mathrm{M}$
$6 x+4=A(x+1)(2 x+3)+B(x-1)(2 x+3)$
$+C(x+1)(x-1)$
Put $x=-1,-2=B(-2)(1)$
$B=1$
Put $x=-\frac{3}{2},-9+4=C\left(-\frac{1}{2}\right)\left(-\frac{5}{2}\right)$
$C=-4$
Put $x=1,10=A(2)(5)$
$A=1$

$$
f(x)=\frac{1}{(x-1)}+\frac{1}{(x+1)}-\frac{4}{(2 x+3)}
$$

5(b) $\int \frac{3 x+2}{(x-1)(x+1)(2 x+3)} \mathrm{d} x$
$=\int \frac{1}{2}\left[\frac{1}{(x-1)}+\frac{1}{(x+1)}-\frac{4}{(2 x+3)}\right] \mathrm{d} x$
$=\frac{1}{2}[\ln |x-1|+\ln |x+1|-2 \ln |2 x+3|(+\ln C)]$
$=\frac{1}{2}\left[\ln \left|\frac{C(x+1)(x-1)}{(2 x+3)^{2}}\right|\right]$ or $\left[\ln \left|\frac{\sqrt{c(x+1)(x-1)}}{(2 x+3)}\right|\right]$

A1 two correct constants

A1 third constant correct

B3 B1 correct int of $\frac{1}{(x-1)}$
B1 correct int of $\frac{1}{(x+1)}$
B1 correct int of $\frac{K}{(2 x+3)}$
Condone no modulus signs for B3
M1 attempt to tidy up into one \ln term
B

M0 if extra terms seen

A1 cao accept $+C$

A0 if no C. ISW

Q Solution

6(a) $\quad T_{12}=10+(12-1) \times 0.2$
$T_{12}=£ 12.20$

6(b) $\quad(954=) \frac{n}{2}[2 \times 10+(n-1) \times 0.2]$
$9540=n[100+n-1]$
$n^{2}+99 n-9540=0$
$(n-60)(n+159)=0$
$n=60$

60 (months)

Mark Notes

M1 use of $a+(n-1) d$
Allow $d=20$ for M1.
Implied by correct answer.
A1

M1 use of $\frac{n}{2}[2 a+(n-1) d]$
Allow $d=20$ for M1.
m1 equating to 954 and writing as quadratic
Implied by $n=60$

A1 cao Dependent on M1
A0 if $n=-159$ present in final answer

Q Solution

$7 \quad x^{2}=8 \sqrt{x} \quad$ or $\quad y=\left(\frac{y^{2}}{64}\right)^{2}$
$x^{4}=64 x \quad$ or $y^{4}=4096 y$
$x\left(x^{3}-64\right)=0 \quad$ or $\quad y\left(y^{3}-4096\right)=0$
$x=(0)$,$4 \quad or \quad y=(0)$,
Area $=\int_{0}^{4}\left(8 x^{\frac{1}{2}}-x^{2}\right) d x$

Area $=\left[\frac{16}{3} x^{\frac{3}{2}}-\frac{1}{3} x^{3}\right]_{0}^{4}$

Area $=\frac{16}{3} \times 8-\frac{1}{3} \times 64$
Area $=\frac{64}{3}$

Mark Notes

M1 equating y 's

A1 oe e.g. $x^{\frac{3}{2}}=8$
A1 si, 0 not required.
M1 oe allow $x^{2}-8 x^{\frac{1}{2}}$
limits not required

A1 one correct term
Must be seen

A1 other correct term

A1 cso
A0 if integral gives negative answer, unless corrected without any incorrect statements.

$\underline{\text { Alternative Solution for last } 4 \text { marks }}$

$$
\begin{align*}
A & =\int_{0}^{4} 8 x^{\frac{1}{2}} \mathrm{~d} x \tag{M1}\\
& =\left[\frac{16}{3} x^{\frac{3}{2}}\right]_{0}^{4} \\
& =\frac{16}{3} \times 8\left(=\frac{128}{3}\right) \\
B & =\int_{0}^{4} x^{2} \mathrm{~d} x \\
& =\left[\frac{1}{3} x^{3}\right]_{0}^{4} \\
& \left(=\frac{64}{3}\right) \tag{A1}
\end{align*}
$$

(A1) Must be seen

Award M1 if not awarded previously
(A1) Must be seen

Required area $=A-B=\frac{64}{3}$
Note: Answer only, M1 A0 A0 A0

$$
\begin{aligned}
& \frac{2-x}{\sqrt{1+3 x}}=(2-x)(1+3 x)^{-1 / 2} \\
& (1+3 x)^{-1 / 2}=\left(1+\left(-\frac{1}{2}\right)(3 x)+\frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(3 x)^{2}+\ldots\right) \mathrm{B} 1 \quad 1+\left(-\frac{1}{2}\right) \\
& \text { B1 } \frac{\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{2}(3 x)^{2} \\
& \frac{2-x}{\sqrt{1+3 x}}=(2-x)\left(1-\frac{3}{2} x+\frac{27}{8} x^{2}+\ldots .\right) \\
& =2-3 x+\frac{27}{4} x^{2}-x+\frac{3}{2} x^{2}+\ldots \\
& =2-4 x+\frac{33}{4} x^{2}+\ldots \\
& \text { B3 B1 each term } \\
& \text { Ignore further terms, ISW } \\
& \text { Expansion valid for }|3 x|<1 \\
& |x|<\frac{1}{3} \text { or }-\frac{1}{3}<x<\frac{1}{3} \\
& \text { B1 B1 for } x<\frac{1}{3} \text { and } x>-\frac{1}{3} \\
& \text { B0 anything else }
\end{aligned}
$$

When $x=\frac{1}{22}$,
$\frac{2-\frac{1}{22}}{\sqrt{1+\frac{3}{22}}} \approx 2-\frac{4}{22}+\frac{33}{4}\left(\frac{1}{22}\right)^{2} \quad$ M1 sub into LHS and RHS
$\frac{\frac{43}{22}}{\frac{5 \sqrt{22}}{22}}=\frac{43}{5 \sqrt{22}} \approx \frac{323}{176} \quad$ or $\quad \frac{43 \sqrt{22}}{110} \approx \frac{323}{176}$
$\sqrt{22} \approx \frac{7568}{1615} \quad$ or $\quad \frac{1615}{344}$
A1 cao
$(=4.686068111 \ldots$, or $4.694767442 \ldots$, actual value is $4.69041576 \ldots$)

Special case for $(1+3 x)^{1 / 2}$ used

$$
(1+3 x)^{1 / 2}=\left(1+\left(\frac{1}{2}\right)(3 x)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2}(3 x)^{2}+\ldots\right)
$$

$$
\begin{aligned}
\frac{2-x}{\sqrt{1+3 x}} & =(2-x)\left(1+\frac{3}{2} x-\frac{9}{8} x^{2}+\ldots\right) \\
& =2+3 x-\frac{9}{4} x^{2}-x-\frac{3}{2} x^{2}+\ldots \\
& =2+2 x-\frac{15}{4} x^{2}+\ldots
\end{aligned}
$$

(B3) B1 each term
Ignore further terms, ISW
Expansion valid for $|3 x|<1$

$$
|x|<\frac{1}{3} \text { or }-\frac{1}{3}<x<\frac{1}{3}
$$

(B1) B1 for $x<\frac{1}{3}$ and $x>-\frac{1}{3}$
B 0 anything else

Correct substitution (M1)
(A0)

Q Solution

9(a) $\quad u_{1}=\sin \left(\frac{\pi}{2}\right)=1$

$$
\begin{aligned}
& u_{2}=\sin \left(\frac{2 \pi}{2}\right)=0 \\
& u_{3}=\sin \left(\frac{3 \pi}{2}\right)=-1 \\
& u_{4}=\sin \left(\frac{4 \pi}{2}\right)=0 \\
& u_{5}=\sin \left(\frac{5 \pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)=1
\end{aligned}
$$

Sequence is periodic (with period 4)

9(b) $\quad u_{5}=17$
$\left(u_{5}=17\right), u_{4}=9, u_{3}=5, u_{2}=3, u_{1}=2$
Sequence is increasing.

Mark Notes

B1 All 5 terms
B1 Condone 'Repeats every 4 terms' or 'Oscillates'

B1

B1 Accept 'Divergent'

Q Solution

$10 \quad \frac{6 x^{5}-17 x^{4}-5 x^{3}+6 x^{2}}{(3 x+2)}=\frac{\left(x^{2}\right)\left(6 x^{3}-17 x^{2}-5 x+6\right)}{(3 x+2)}$

$$
=\frac{\left(x^{2}\right)(3 x+2)\left(2 x^{2}-7 x+3\right)}{(3 x+2)}
$$

$$
=x^{2}(2 x-1)(x-3)=0
$$

$$
x=0(\text { twice }), \frac{1}{2}, 3
$$

Note: $\left(6 x^{3}-17 x^{2}-5 x+6\right)=(x-3)\left(6 x^{2}+x-2\right)$

$$
\left(6 x^{3}-17 x^{2}-5 x+6\right)=(2 x-1)\left(3 x^{2}-7 x-6\right)
$$

Alternative Solution

$10 \quad \frac{6 x^{5}-17 x^{4}-5 x^{3}+6 x^{2}}{(3 x+2)}=\frac{\left(x^{2}\right)\left(6 x^{3}-17 x^{2}-5 x+6\right)}{(3 x+2)}$

$$
=\frac{\left(x^{2}\right)(3 x+2)\left(2 x^{2}-7 x+3\right)}{(3 x+2)}
$$

$$
=x^{2}(2 x-1)(x-3)=0
$$

$$
x=0 \text { (twice), } \frac{1}{2}, 3 .
$$

(A1) cao A0 if $-\frac{2}{3}$ present

Note: $\left(6 x^{3}-17 x^{2}-5 x+6\right)=(x-3)\left(6 x^{2}+x-2\right)$

$$
\left(6 x^{3}-17 x^{2}-5 x+6\right)=(2 x-1)\left(3 x^{2}-7 x-6\right)
$$

Q Solution

11(a) $9 \cos x+40 \sin x=R \cos x \cos \alpha+R \sin x \sin \alpha$
$R \cos \alpha=9$ and $R \sin \alpha=40 \quad$ M1 implied by correct α if
nothing seen.
M0 for incorrect equations

$$
R=\sqrt{9^{2}+40^{2}}=41
$$

$$
\alpha=\tan ^{-1}\left(\frac{40}{9}\right)=77.32^{\circ}
$$

$9 \cos x+40 \sin x \equiv 41 \cos \left(x-77.32^{\circ}\right)$

B1

A1 accept 1.349 rad , not 1.349
ft R if $\alpha=\sin ^{-1}\left(\frac{40}{R}\right)=\cos ^{-1}\left(\frac{9}{R}\right)$

Mark Notes

11(b) $y=\frac{12}{9 \cos x+40 \sin x+47}$
Maximum y when denominator is minimum,
i.e. when $\cos \left(x-77.32^{\circ}\right)=-1$
$\operatorname{Max} y\left(=\frac{12}{-41+47}\right)=2$

M1 implied by correct max
A1 $\mathrm{ft} R$

Q Solution

12(a) $f f(p)=f(0)=10$

12(b) $2 x^{2}+12 x+10=0$
$2\left(x^{2}+6 x+5\right)=0$
$2(x+5)(x+1)=0$
$p=-5, q=-1$

12(c) $f(x)=2\left[x^{2}+6 x+5\right]$
$=2\left[(x+3)^{2}-4\right]$
$=2(x+3)^{2}-8$
Min point at $(-3,-8)$

12(d) $f(x)$ is not a one-to-one function (on its domain).

$$
\begin{aligned}
& \text { 12(e)(i) Let } \begin{aligned}
& y=2(x+3)^{2}-8 \\
& \begin{aligned}
(x+3)^{2} & =\frac{y+8}{2} \\
x & =-3 \pm \sqrt{\frac{y+8}{2}} \\
\text { since } x & \geq-3, x=-3+\sqrt{\frac{y+8}{2}} \\
g^{-1}(x) & =-3+\sqrt{\frac{x+8}{2}}
\end{aligned}
\end{aligned} . \begin{aligned}
\end{aligned} \\
&
\end{aligned}
$$

12(e)(ii)

Mark Notes

B1

M1 may be implied by solution

A1 both

M1 condone absence of ' 2 '
A1 cao
B1

B1

M1 ft similar form from (c)
A1 Condone $x=-3+\sqrt{\frac{y+8}{2}}$
A1 Must discard negative root

A1 interchange x and y, could be done earlier

Q Solution

13(a) $f^{\prime}(x)=6 x^{2}+3$
Hence $f^{\prime}(x)>0$ for all x,
i.e. $f(x)$ does not have a stationary point.

13(b) $f^{\prime \prime}(x)=12 x$
At point of inflection $f^{\prime \prime}(x)=0, x=0$
$f^{\prime}(x)>0$ when $x<0$ and when $x>0$.
Therefore, when $x=0$,
there is a point of inflection.

The point of inflection is $(0,-5)$

Mark Notes

B1

E1 oe
e.g. $f^{\prime}(x)=0$ has no real roots
discriminant $=0^{2}-4(6)(3)<0$, no real roots
m1

A1 oe cubic curve no max/min must have a point of inflection. OR $x>0, f^{\prime \prime}(x)>0 ; x<0, f^{\prime \prime}(x)<0$

B1

13(c)

Q Solution
G1 cubic curve no max/min ft point in (b) coords not required. $(1,0)$ not required.

$I=\left[\pm \cos x \cdot x^{2}\right]_{0}^{\pi}-\int_{0}^{\pi} \pm \cos x \cdot 2 x \mathrm{~d} x \quad$ M	M1	attempt at parts, 2 terms, at least one term correct. Limits not required
$I=\left[-\cos x \cdot x^{2}\right]_{0}^{\pi}-\int_{0}^{\pi}-\cos x .2 x \mathrm{~d} x$	A1	
$I=\left[-\cos x \cdot x^{2}\right]_{0}^{\pi}+[\sin x .2 x]_{0}^{\pi}$		
$-\int_{0}^{\pi} 2 \sin x \mathrm{~d} x$	A1	correct integration of
		$\int_{0}^{\pi} \pm \cos x .2 x \mathrm{~d} x$
$I=\left[-\cos x \cdot x^{2}\right]_{0}^{\pi}+[2 \sin x \cdot x]_{0}^{\pi}+[2 \cos x]_{0}^{\pi} \mathrm{A}$		correct integration of
		$\int_{0}^{\pi} \pm \sin x \mathrm{~d} x$
$I=\left[2 x \sin x+\left(2-x^{2}\right) \cos x\right]_{0}^{\pi}$		
$I=\pi^{2}+0+2(-1-1)$		correct use of correct limits
		Implied by correct answer
$I=\pi^{2}-4(=5.87)$	A1	cao

$$
I=\pi^{2}-4(=5.87)
$$

A1 cao

Note

No marks for answer unsupported by workings.
If integration is incorrect and answer of 5.87 seen with no working, m0 A0. If substitution seen m 1 is available.

Be careful of use of calculators to obtain correct answer after incorrect integration.
Condone missing $\mathrm{d} x$.
M1A0 only for $I=\left[\sin x \cdot \frac{x^{3}}{3}\right]_{0}^{\pi}-\int_{0}^{\pi} \frac{x^{3}}{3} \cos x \mathrm{~d} x$

Q Solution

15(a) $y=\sqrt{16-x^{2}}$ OR $A=2 x y$
B1

$$
A=2 x \sqrt{16-x^{2}}
$$

15(b) $\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{d} x}\left[2 x\left(16-x^{2}\right)^{1 / 2}\right]$
M1 $f(x)\left(16-x^{2}\right)^{1 / 2}+2 x g(x)$

M0 if $f(x)=0$ or 1 or $g(x)=0$ or 1
Only ft if product with $B x \sqrt{K-x^{2}}$
$\frac{\mathrm{d} A}{\mathrm{~d} x}=2\left(16-x^{2}\right)^{1 / 2}+2 x \times \frac{1}{2}\left(16-x^{2}\right)^{-1 / 2}(-2 x) \quad$ A1A1 one each term, $\mathrm{ft}(\mathrm{a})$
$\frac{\mathrm{d} A}{\mathrm{~d} x}=\frac{4}{\left(16-x^{2}\right)^{1 / 2}}\left[8-x^{2}\right]$
At max, $\frac{\mathrm{d} A}{\mathrm{~d} x}=0$
$x^{2}=8$
$x=2 \sqrt{ } 2$ (-ve value inadmissible)
$y=\sqrt{16-x^{2}}=\sqrt{16-8}=2 \sqrt{ } 2$
therefore $y=x$.
Justification of maximum
B1 $\quad \frac{\mathrm{d}^{2} A}{\mathrm{~d} x^{2}}=-22$ when $x=2 \sqrt{2}$
OR
$A^{2}=4 x^{2}\left(16-x^{2}\right)=64 x^{2}-4 x^{4}$
$\frac{\mathrm{d} A^{2}}{\mathrm{~d} x}=128 x-16 x^{3}$
At max, $\frac{\mathrm{d} A^{2}}{\mathrm{~d} x}=0$
$x^{2}=8, x=2 \sqrt{ } 2$ (-ve value inadmissible)
$y=\sqrt{16-x^{2}}=\sqrt{16-8}=2 \sqrt{ } 2$
therefore $y=x$.

Justification of maximum
(B1) $\frac{\mathrm{d}^{2} A^{2}}{\mathrm{~d} x^{2}}=-256$ when $x=2 \sqrt{2}$

Q Solution

16(a) Where C meets the y-axis,

$$
3-4 t+t^{2}=0 \quad \text { M1 }
$$

$$
(t-1)(t-3)=0
$$

$t=1$, point is $(0,9)$	A1	or $t=1,3$
$t=3$, point is $(0,1)$	A1	all correct

16(b) $\frac{\mathrm{d} y}{\mathrm{~d} t}=-2(4-t)$
B1
$\frac{\mathrm{d} x}{\mathrm{~d} t}=-4+2 t$
$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{-2(4-t)}{-4+2 t}$
B1 ft their $\mathrm{d} y / \mathrm{d} t$ and $\mathrm{d} x / \mathrm{d} t$
Note: May be seen in (a)
At stationary point, $\frac{-2(4-t)}{-4+2 t}=0 \quad$ M1
$t=4$
At stationary point, $y=(4-4)^{2}=0$.
Hence the x-axis is a tangent to the curve C. A1

Q Solution

17(a) $\cos (\alpha-\beta)+\sin (\alpha+\beta)$
$=\cos \alpha \cos \beta+\sin \alpha \sin \beta+\sin \alpha \cos \beta+\cos \alpha \sin \beta \quad$ B 1
$=\cos \alpha(\cos \beta+\sin \beta)+\sin \alpha(\cos \beta+\sin \beta)$
$=(\cos \alpha+\sin \alpha)(\cos \beta+\sin \beta)$
B1
convincing

OR
$(\cos \alpha+\sin \alpha)(\cos \beta+\sin \beta)$
$=\cos \alpha \cos \beta+\cos \alpha \sin \beta+\sin \alpha \cos \beta+\sin \alpha \sin \beta$
(B1) remove brackets
$=\cos \alpha \cos \beta+\sin \alpha \sin \beta+\sin \alpha \cos \beta+\cos \alpha \sin \beta$
$=\cos (\alpha-\beta)+\sin (\alpha+\beta)$
(B1) convincing

OR
$\cos (\alpha-\beta)+\sin (\alpha+\beta)$
$=\cos \alpha \cos \beta+\sin \alpha \sin \beta+\sin \alpha \cos \beta+\cos \alpha \sin \beta$
expand $\cos (\alpha-\beta), \sin (\alpha+\beta)$
$(\cos \alpha+\sin \alpha)(\cos \beta+\sin \beta)$
$=\cos \alpha \cos \beta+\cos \alpha \sin \beta+\sin \alpha \cos \beta+\sin \alpha \sin \beta \quad$ (B1) remove brackets
Hence $\cos (\alpha-\beta)+\sin (\alpha+\beta)$

$$
=(\cos \alpha+\sin \alpha)(\cos \beta+\sin \beta)
$$

Q Solution

17(b)(i) Put $\alpha=4 \theta, \beta=\theta$

$$
\begin{aligned}
\cos (4 \theta & -\theta)+\sin (4 \theta+\theta) \\
& =(\cos 4 \theta+\sin 4 \theta)(\cos \theta+\sin \theta)
\end{aligned}
$$

$$
\frac{\cos 3 \theta+\sin 5 \theta}{\cos 4 \theta+\sin 4 \theta}=\cos \theta+\sin \theta
$$

17(b)(ii) When $\theta=\frac{3 \pi}{16}$,
$\cos 4 \theta+\sin 4 \theta=\cos \frac{3 \pi}{4}+\sin \frac{3 \pi}{4}=0$
So $\frac{\cos 3 \theta+\sin 5 \theta}{\cos 4 \theta+\sin 4 \theta}$ is undefined.

OR
$\cos 4 \theta+\sin 4 \theta \neq 0$
$\tan 4 \theta \neq-1$
$4 \theta \neq \frac{3 \pi}{4}$
$\theta \neq \frac{3 \pi}{16}$

Mark Notes

M1

A1 convincing

B1

Q Solution

18(a) Put $u=x+3$

$$
\begin{aligned}
\int \frac{x^{2}}{(x+3)^{4}} & \mathrm{~d} x=\int \frac{(u-3)^{2}}{u^{4}} \mathrm{~d} u \\
& =\int \frac{u^{2}-6 u+9}{u^{4}} \mathrm{~d} u \\
& =\int\left(u^{-2}-6 u^{-3}+9 u^{-4}\right) \mathrm{d} u \\
& =\frac{u^{-1}}{-1}-\frac{6 u^{-2}}{-2}+\frac{9 u^{-3}}{-3}(+C)
\end{aligned}
$$

$$
=-\frac{1}{u}+\frac{3}{u^{2}}-\frac{3}{u^{3}}(+C)
$$

$$
=-\frac{1}{x+3}+\frac{3}{(x+3)^{2}}-\frac{3}{(x+3)^{3}}+C
$$

B1
M1 Allow one slip

A1 integrable form $\mathrm{ft}(u+3)$ only

A1 correct integration
$\mathrm{ft}(u+3)$ only

A1 cao Correct expression in terms
of x
Must include $+C$

18(b) $\int_{0}^{1} \frac{x^{2}}{(x+3)^{4}} \mathrm{~d} x=\left[-\frac{1}{x+3}+\frac{3}{(x+3)^{2}}-\frac{3}{(x+3)^{3}}\right]_{0}^{1}$

$$
=\left(-\frac{1}{4}+\frac{3}{16}-\frac{3}{64}\right)-\left(-\frac{1}{3}+\frac{1}{3}-\frac{1}{9}\right)
$$

$$
=\frac{1}{576}(=0.001736)
$$

A1 cao
No workings, 0 marks
OR

$$
\begin{aligned}
& \int_{0}^{1} \frac{x^{2}}{(x+3)^{4}} \mathrm{~d} x=\left[-\frac{1}{u}+\frac{3}{u^{2}}-\frac{3}{u^{3}}\right]_{3}^{4} \\
& =\left(-\frac{1}{4}+\frac{3}{16}-\frac{3}{64}\right)-\left(-\frac{1}{3}+\frac{1}{3}-\frac{1}{9}\right)
\end{aligned}
$$

(M1) correct use of correct limits ft for equivalent difficulty for M1 only

$$
=\frac{1}{576}(=0.001736)
$$

(A1) cao

No workings, 0 marks

