GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW)
FURTHER MATHEMATICS UNIT 6 FURTHER MECHANICS B 1305U60-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 6 FURTHER MECHANICS B
SUMMER 2022 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	$\begin{aligned} & a=v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & \frac{\mathrm{~d} v}{\mathrm{~d} x}=-\frac{96}{(4 x+9)^{2}} \\ & a=\frac{24}{4 x+9} \times-24(4 x+9)^{-2} \times 4 \\ & a=-\frac{2304}{(4 x+9)^{3}} \end{aligned}$	M1 B1 A1 [3]	Used cao, isw
(b)	$\begin{aligned} & \text { (i) }-\frac{4}{3}=-\frac{2304}{(4 x+9)^{3}} \\ & 4 x+9=\sqrt[3]{1728} \\ & x=\frac{3}{4} \end{aligned}$	M1 m1 A1	FT their a from part (a) Only FT $a x+b=\sqrt[3]{c}$ from the form $-\frac{4}{3}=\frac{k}{(4 x+9)^{3}}$ cao
	$\begin{aligned} & \text { (ii) } v=\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{24}{4 x+9} \\ & \int(4 x+9) \mathrm{d} x=24 \int \mathrm{~d} t \\ & 2 x^{2}+9 x=24 t(+C) \end{aligned}$ When $t=0, x=-2 \quad(\Rightarrow C=-10)$ $t=\frac{1}{24}\left(2 x^{2}+9 x+10\right) \quad \text { or } \quad t=\frac{1}{12} x^{2}+\frac{3}{8} x+\frac{5}{12}$ Substitute x from (i) into expression for t above $\begin{aligned} & T=\frac{1}{24}\left(2\left(\frac{3}{4}\right)^{2}+9\left(\frac{3}{4}\right)+10\right) \\ & T=\frac{143}{192}=0 \cdot 74(4791 \ldots) \end{aligned}$	M1 A1 m1 A1 M1 A1 [9]	Separation of variables All correct Use of initial conditions Correct expression only ($t=$) Sub. their x into their t expression involving x and t FT their x if used in the correct expression only
	Total for Question 1	12	

Q2	Solution	Mark	Notes
(a)	$\begin{aligned} & \text { (i) } x=\sin (\pi t)+\sqrt{3} \cos (\pi t) . \\ & \frac{\mathrm{d} x}{\mathrm{~d} t}=v=\pi \cos (\pi t)-\sqrt{3} \pi \sin (\pi t) \\ & \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\pi^{2} \sin (\pi t)-\sqrt{3} \pi^{2} \cos (\pi t) \\ & \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-\pi^{2} x \\ & \therefore \quad \text { motion is SHM (with } \omega=\pi) \end{aligned}$ Value of x at the centre of motion $=0$ $\begin{equation*} \text { (ii) Period }=\frac{2 \pi}{\omega}=\frac{2 \pi}{\pi}=2 \tag{s} \end{equation*}$ Amplitude, $a=$ value of x when $v=0$ $\pi \cos (\pi t)-\sqrt{3} \pi \sin (\pi t)=0$ $\begin{aligned} & \tan (\pi t)=\frac{1}{\sqrt{3}} \quad\left(=\frac{\sqrt{3}}{3}\right) \\ & \sin (\pi t)=\frac{1}{2} \quad \text { or } \quad \cos (\pi t)=\frac{\sqrt{3}}{2} \quad \text { OR }\left.\quad x\right\|_{t=\frac{1}{6}} \\ & a=\left(\frac{1}{2}\right)+\sqrt{3}\left(\frac{\sqrt{3}}{2}\right) \\ & a=2(\mathrm{~m}) \end{aligned}$	B1 M1 A1 B1 B1 M1 m1 A1 [8]	$\dot{x}, v=\cdots$ $\ddot{x}, \dot{v}, a=\cdots$ Convincing Convincing FT their v Either trig. ratio OR sub. $t=\frac{1}{6}$ into x
(b)	Q has same period as $P \Rightarrow \omega=\pi$ amplitude is a $\begin{aligned} & v^{2}=\omega^{2}\left(a^{2}-x^{2}\right), \omega=\pi, x= \pm 2 \sqrt{3}, v= \pm 2 \pi \\ & (2 \pi)^{2}=\pi^{2}\left(a^{2}-(2 \sqrt{3})^{2}\right) \\ & a=4 \text { (m) } \end{aligned}$	M1 A1 A1 [3]	Condone repeated use of a FT their $\omega=k \pi$ Correct equation cao
(c)	$\begin{aligned} & x= \pm 4 \sin (\pi t) \\ & \sin (\pi t)+\sqrt{3} \cos (\pi t)= \pm 4 \sin (\pi t) \\ & \tan (\pi t)=\frac{\sqrt{3}}{3} \quad \text { or } \quad \tan (\pi t)=-\frac{\sqrt{3}}{5} \\ & t=\frac{1}{6}=0 \cdot 16(66 \ldots) \quad \text { or } \quad t=0 \cdot 89(385 \ldots) \end{aligned}$	M1 m1 A1 A1 [4]	Allow $\pm a \cos (\pi t), a$ from part (b) $\mathrm{RHS}= \pm a \cos (\pi t)$ cao
	Total for Question 2	15	

Q3	Solution	Mark	Notes
(a)	$(\bar{y}=) 4 a$	B1 [1]	
(b)	Shape Area/mass $\begin{array}{c}8 a \times 6 a \\ \left(=48 a^{2}\right)\end{array}$ $3 a$ $\frac{8 a \times 3 a}{2}$ Distance $A E$ $]-6 a+\frac{1}{3}(3 a)(=7 a)$ Moments about $A E$ $\begin{aligned} & \begin{array}{l} a^{2}\left(60-\frac{9 \pi}{2}\right) \bar{x}=\left(48 a^{2}\right)(3 a)+\left(12 a^{2}\right)(7 a) \\ \quad-\left(\frac{9 \pi a^{2}}{2}\right)\left(\frac{4 a}{\pi}\right) \end{array} \\ & \begin{array}{l} \left(\frac{120-9 \pi}{2}\right) \bar{x}=144 a+84 a-18 a \\ \bar{x}=\frac{140}{40-3 \pi} a \end{array} \end{aligned}$	B3 B1 M1 A1 A1 [7]	Candidates may legitimately include a ρ term for mass per unit area B3 6 B2 any 4 or 5 , B1 any 2 or 3 correct Allow $-\frac{\pi(3 a)^{2}}{2}$ or $-\frac{4(3 a)}{3 \pi}$ Masses and moments consistent All terms, allow one sign error FT Correct for their table, provided semicircle is subtracted in lamina area and moment $\bar{x}=\frac{420}{120-9 \pi} a$ Convincing
(c)	(i) If hanging in equilibrium, vertical passes through centre of mass. $\begin{array}{ll} \alpha=\tan ^{-1}\left(\frac{6 a-\bar{x}}{4 a}\right) & \text { OR } \quad \alpha= \\ \tan ^{-1}\left(\frac{4 a}{6 a-\bar{x}}\right) & \\ & \alpha=90-70 \cdot 44(07 \ldots)^{0} \\ \alpha=19 \cdot 55(92 \ldots)^{\mathrm{o}} & \end{array}$	M1 A1 A1	Correct triangle identified Condone missing a 's Note that $\begin{aligned} 6 a-\bar{x} & =\left(\frac{100-18 \pi}{40-3 \pi}\right) a \\ & =(1 \cdot 4211 \ldots) a \end{aligned}$ cso, accept answers rounding to $\theta=19^{\circ} \text { or } 20^{\circ}$

Q4

Q5	Solution	Mark	Notes
(a)	Con. of momentum (along line of centres) $\begin{aligned} & 4 u_{A}+2 u_{B}=4(-2)+2(1) \\ & \left(2 u_{A}+u_{B}=-3\right) \end{aligned} 4 u_{A} \mathbf{i}+2 u_{B} \mathbf{i}=-6 \mathbf{i}$ Restitution (along line of centres) $\begin{aligned} & (1)-(-2)=-\frac{2}{5}\left(u_{B}-u_{A}\right) \\ & \left(2 u_{A}-2 u_{B}=15\right) \end{aligned} \quad 4 u_{A} \mathbf{i}+2 u_{B} \mathbf{i}=-6 \mathbf{i} \mathbf{i}$ Solving equations $u_{A}=\frac{3}{2} \quad u_{B}=-6$ Velocities before collision Sphere $A=\frac{3}{2} \mathbf{i}-5 \mathbf{j} \quad\left(\mathrm{~ms}^{-1}\right)$ Sphere $B=-6 \mathbf{i}+3 \mathbf{j} \quad\left(\mathrm{~ms}^{-1}\right)$	M1 A1 M1 A1 m1 A1 A1 [7]	Before collision After collision $e=\frac{2}{5}$ Attempted. Allow 1 sign error. $4\left(u_{4} i-5 i\right)+2\left(u_{G} i+3 j\right)=4(-2 i-5 i)+2(i+3 j)$ All correct, oe Condone i's, i.e. Attempted. Allow 1 sign error. All correct, condone i's, $\frac{2}{5}=-\frac{1--2}{u_{B}-u_{A}}=\frac{1--2}{u_{A}-u_{B}}$ One variable eliminated cao cao
(b)	Wall is parallel to vector \mathbf{i} since impulse only has a j component	$\begin{aligned} & \mathrm{B} 1 \\ & {[1]} \end{aligned}$	Parallel to vector i since ... - No i component - No momentum in idirection - Perpendicular to wall
(c)	Impulse, $\mathbf{I}=$ change in momentum $32 \mathbf{j}=4 \mathbf{v}-4(-2 \mathbf{i}-5 \mathbf{j})$ $\begin{aligned} & \mathbf{v}=-2 \mathbf{i}+3 \mathbf{j} \\ & \begin{aligned} \text { speed } & =\sqrt{2^{2}+3^{2}} \\ & =\sqrt{13} \quad\left(\mathrm{~ms}^{-1}\right) \quad \text { or } \quad=3 \cdot 60(55 \ldots) \end{aligned} \end{aligned}$	M1 A1 B1 [3]	Used, $32 \mathbf{j}=-4 \mathbf{v}+4(-2 \mathbf{i}-5 \mathbf{j})$ $32=4 v-4(-5)$ Condone j's on the above FT their $\sqrt{13}$ derived from $\mathbf{v}=-2 \mathbf{i}+a \mathbf{j}, \quad a \neq 0$
(d)	$\begin{aligned} & \text { Loss in } K E=\frac{1}{2}(4)\left(2^{2}+5^{2}\right)-\frac{1}{2}(4)\left(\sqrt{13}^{2}\right) \\ & \text { OR } \\ & \text { Loss in } K E=\frac{1}{2}(4)\left(5^{2}\right)-\frac{1}{2}(4)\left(3^{2}\right) \\ & \text { Loss in } K E=32 \end{aligned}$	M1 A1 [2]	Difference in KE, any order At least one v^{2} correct FT provided loss $($ in KE) >0
	Total for Question 5	13	

Q6	Solution	Mark	Notes
(a)	Let $A C=y$ $\begin{array}{ll} T_{A}=\frac{60(y-0 \cdot 8)}{0 \cdot 8} & (=75 y-60) \\ T_{B}=\frac{30(2 \cdot 8-1 \cdot 2-y)}{1 \cdot 2} & (=40-25 y) \end{array}$ In equilibrium, $T_{A}=T_{B}$ $\begin{aligned} & \frac{60(y-0 \cdot 8)}{0 \cdot 8}=\frac{30(2 \cdot 8-1 \cdot 2-y)}{1 \cdot 2} \\ & 75 y-60=40-25 y \\ & y=1(\mathrm{~m}) \end{aligned}$	M1 A1 m1 A1 [4]	$A B=2 \cdot 8 \mathrm{~m}$ Use of Hooke's Law $\frac{60 \text { dist }}{0.8}$ or $\frac{30 \text { dist }}{1.2}$ Any algebraic extension/distance T_{B} or T_{A} correct Convincing
(b)	(i) Let x denote the displacement of P from C $\begin{array}{ll} T_{A}=\frac{60(0 \cdot 2+x)}{0.8} & (=15+75 x) \\ T_{B}=\frac{30(0 \cdot 6-x)}{1 \cdot 2} & (=15-25 x) \end{array}$ Apply N2L to P, $\begin{aligned} & T_{B}-T_{A}=4 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ & \frac{30(0 \cdot 6-x)}{1 \cdot 2}-\frac{60(0 \cdot 2+x)}{0 \cdot 8}=4 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ &-100 x=4 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}} \\ & \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=-25 x \end{aligned}$ \therefore SHM with $\omega=5$ (with centre at C) $\text { Period }=\frac{2 \pi}{\omega}=\frac{2 \pi}{5}$	B1 M1 A1 A1 B1 B1	$A B=2 \cdot 8 \mathrm{~m}$ either term, oe Dim. correct. T_{B}, T_{A} opposing Allow for any defined x, e.g. $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=-25(x-1)$ Must come from $\ddot{\chi}-\omega^{2} x$ FT ω

(ii) Amplitude, $a=1 \cdot 4-1=0 \cdot 4$ (m) Using $x= \pm a \cos \omega t$ with $a=0 \cdot 4, \omega=5$ $\begin{align*} & -0 \cdot 2=0 \cdot 4 \cos 5 t \\ & \quad t=\frac{2 \pi}{15}=0 \cdot 418(879 \ldots) \tag{s} \end{align*}$	B1 M1 A1 A1 [10]	Allow $x= \pm a \sin (\omega t)$ FT a and ω FT for $-0 \cdot 2=a \cos \omega t$ cao
Total for Question 6	14	

Q6	Alternative Solution	Mark	Notes
(a)	Let $e=$ extension in $A P$ $\begin{array}{ll} T_{A}=\frac{60}{0.8} e & (=75 e) \\ T_{B}=\frac{30(0.8-e)}{1 \cdot 2} & (=20-25 e) \end{array}$ In equilibrium, $T_{A}=T_{B}$ $\begin{aligned} & \frac{60}{0 \cdot 8} e=\frac{30(0 \cdot 8-e)}{1 \cdot 2} \\ & 75 e=20-25 e \quad \Rightarrow \quad e=0 \cdot 2 \\ & A C=0 \cdot 8+0 \cdot 2=1 \quad \text { (m) } \end{aligned}$	M1 A1 m1 A1 [4]	$A B=2 \cdot 8 \mathrm{~m}$ Use of Hooke's Law $\frac{60 \text { dist }}{0.8}$ or $\frac{30 \text { dist }}{1.2}$ Any algebraic distance/extension T_{B} or T_{A} correct Convincing

Q6	Alternative Solution	Mark	Notes
(b)	(i) Let x denote the displacement of P from - the midpoint of $A B$ - A $\begin{array}{ll} T_{A}=\frac{60(1 \cdot 4-0 \cdot 8-x)}{0.8} & T_{A}=\frac{60(x-0.8)}{0.8} \\ T_{B}=\frac{30(1 \cdot 4-1 \cdot 2+x)}{1 \cdot 2} & T_{B}=\frac{30(2 \cdot 8-1 \cdot 2-x)}{1 \cdot 2} \end{array}$ Apply N2L to P, $\begin{gathered} 4 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=\left\{\begin{array}{l} T_{A}-T_{B} \\ T_{B}-T_{A} \end{array}\right. \\ 4 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=\left\{\begin{array}{l} \frac{60(1 \cdot 4-0 \cdot 8-x)}{0 \cdot 8}-\frac{30(1 \cdot 4-1 \cdot 2+x)}{1 \cdot 2} \\ \frac{30(2 \cdot 8-1 \cdot 2-x)}{1 \cdot 2}-\frac{60(x-0 \cdot 8)}{0 \cdot 8} \end{array}\right. \\ 4 \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}=\left\{\begin{array}{l} 40-100 x \\ 100-100 x \end{array}\right. \\ \frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=\left\{\begin{array}{l} -25(x-0 \cdot 4) \\ -25(x-1) \end{array}\right. \end{gathered}$ \therefore SHM with $\omega=5$ (with centre at $x=0 \cdot 4$, i.e. C) (with centre at $x=1$, i.e. C) $\text { Period }=\frac{2 \pi}{\omega}=\frac{2 \pi}{5}$	B1 M1 A1 A1 B1 B1	$A B=2 \cdot 8 \mathrm{~m}$ $T_{A}=45-75 x \text { or } 75 x-60$ either term, oe $T_{B}=5+25 x \text { or } 40-25 x$ Dim. correct. T_{B}, T_{A} opposing $\mathrm{FT} \omega$
	(ii) Amplitude, $a=1.4-1=0.4$ (m) Using $x-0 \cdot 4= \pm a \cos \omega t$ with $a=0 \cdot 4, \omega=5$ $\begin{align*} & 0 \cdot 6-0 \cdot 4=-0 \cdot 4 \cos 5 t \\ & t=\frac{2 \pi}{15}=0 \cdot 418(879 \ldots) \tag{s} \end{align*}$ OR Using $x-1= \pm a \cos \omega t$ with $a=0 \cdot 4 \quad \omega=5$ $\begin{align*} 0 \cdot 8 & =1+0 \cdot 4 \cos 5 t \\ -0 \cdot 2 & =0 \cdot 4 \cos 5 t \\ t & =\frac{2 \pi}{15}=0 \cdot 418(879 \ldots) \tag{s} \end{align*}$	B1 M1 A1 A1 (M1) (A1) (A1) [10]	Allow $x= \pm a \sin (\omega t)$ FT a and ω FT RHS with $x=1 \cdot 4-0 \cdot 8$ cao
	Total for Question 6	14	

