wjec cbac

GCE A LEVEL MARKING SCHEME

SUMMER 2022

A LEVEL (NEW) FURTHER MATHEMATICS UNIT 6 FURTHER MECHANICS B 1305U60-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE A LEVEL FURTHER MATHEMATICS

UNIT 6 FURTHER MECHANICS B

SUMMER 2022 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	$a = v \frac{\mathrm{d}v}{\mathrm{d}x}$	M1	Used
	$\frac{\mathrm{d}v}{\mathrm{d}x} = -\frac{96}{(4x+9)^2}$	B1	
	$a = \frac{24}{4x+9} \times -24(4x+9)^{-2} \times 4$	A1	cao, isw
	$a = -\frac{2304}{(4x+9)^3}$	[3]	
(b)	(i) $-\frac{4}{3} = -\frac{2304}{(4x+9)^3}$	M1	FT their a from part (a)
	$4x + 9 = \sqrt[3]{1728}$	m1	Only FT $ax + b = \sqrt[3]{c}$ from the form $-\frac{4}{3} = \frac{k}{(4x+9)^3}$
	$x = \frac{3}{4}$	A1	сао
	(ii) $v = \frac{dx}{dt} = \frac{24}{4x+9}$		
	$\int (4x+9)\mathrm{d}x = 24\int \mathrm{d}t$	M1	Separation of variables
	$2x^2 + 9x = 24t (+C)$	A1	All correct
	When $t = 0, x = -2$ ($\Rightarrow C = -10$)	m1	Use of initial conditions
	$t = \frac{1}{24}(2x^2 + 9x + 10)$ or $t = \frac{1}{12}x^2 + \frac{3}{8}x + \frac{5}{12}$	A1	Correct expression only $(t =)$
	Substitute <i>x</i> from (i) into expression for <i>t</i> above $T = \frac{1}{24} \left(2 \left(\frac{3}{4} \right)^2 + 9 \left(\frac{3}{4} \right) + 10 \right)$	M1	Sub. their x into their t expression involving x and t
	$T = \frac{143}{192} = 0 \cdot 74(4791\dots)$	A1	FT their <i>x</i> if used in the correct expression only
		[9]	
	Total for Question 1	12	

Q2	Solution	Mark	Notes
(a)	(i) $x = \sin(\pi t) + \sqrt{3}\cos(\pi t)$.		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = v = \pi \cos(\pi t) - \sqrt{3} \pi \sin(\pi t)$	B1	$\dot{x}, v = \cdots$
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\pi^2 \sin(\pi t) - \sqrt{3} \pi^2 \cos(\pi t)$	M1	$\ddot{x}, \dot{v}, a = \cdots$
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\pi^2 x$	A1	Convincing
	\therefore motion is SHM (with $\omega = \pi$)		
	Value of x at the centre of motion = 0	B1	
	(ii) Period $=\frac{2\pi}{\omega}=\frac{2\pi}{\pi}=2$ (s)	B1	Convincing
	Amplitude, $a =$ value of x when $v = 0$ $\pi \cos(\pi t) - \sqrt{3} \pi \sin(\pi t) = 0$	M1	FT their v
	$\tan(\pi t) = \frac{1}{\sqrt{3}} \left(=\frac{\sqrt{3}}{3}\right)$		
	$\sin(\pi t) = \frac{1}{2}$ or $\cos(\pi t) = \frac{\sqrt{3}}{2}$ OR $x _{t=\frac{1}{6}}$	m1	Either trig. ratio OR sub. $t = \frac{1}{6}$ into x
	$a = \left(\frac{1}{2}\right) + \sqrt{3} \left(\frac{\sqrt{3}}{2}\right)$ $a = 2 (m)$	A1 [8]	cao $0 = 1$ $H = 2$ πt $A = \sqrt{3}$
(b)	<i>Q</i> has same period as $P \Rightarrow \omega = \pi$ amplitude is <i>a</i>		Condone repeated use of a
	$v^2 = \omega^2 (a^2 - x^2), \omega = \pi, x = \pm 2\sqrt{3}, v = \pm 2\pi$	M1	FT their $\omega = k\pi$
	$(2\pi)^2 = \pi^2 \left(a^2 - \left(2\sqrt{3} \right)^2 \right),$	A1	Correct equation
	a = 4 (m)	A1	сао
		[3]	
(c)	$x = \pm 4\sin(\pi t)$	M1	Allow $\pm a\cos(\pi t)$, <i>a</i> from part (b)
	$\sin(\pi t) + \sqrt{3}\cos(\pi t) = \pm 4\sin(\pi t)$	m1	$RHS = \pm a \mathrm{cos}(\pi t)$
	$\tan(\pi t) = \frac{\sqrt{3}}{3}$ or $\tan(\pi t) = -\frac{\sqrt{3}}{5}$	A1	
	$t = \frac{1}{6} = 0 \cdot 16(66 \dots)$ or $t = 0 \cdot 89(385 \dots)$	A1	сао
		[4]	
	Total for Question 2	15	

Q4	Solution	Mark	Notes
(a)	$ \begin{array}{c} $		length of rod $AB = l$ $\sin \theta = 0 \cdot 6$ $\cos \theta = 0 \cdot 8$
	Moments about A	M1	Dim. correct equation with 3 terms
	$75\sin\theta \times 0 \cdot 8 = 10 \times \frac{l}{2} + 25 \times l$	A1 A1	-1 each error
	$l = 1 \cdot 2$ (m)	A1	сао
		[4]	
(b)	Resolve verticallyY pointing downwards $Y + 75 \sin \theta = 10 + 25$ $(75 \sin \theta = Y + 10 + 25)$ $Y = -10$ (N) $Y = 10$	M1 A1	Dim. correct equation, no extra/missing forces
	Resolve horizontally $X = 75 \cos \theta$ X = 60 (N)	M1 A1	Dim. correct equation, no extra forces
	$R = \sqrt{60^2 + 10^2}$ R = 10 $\sqrt{37}$ = 60 · 82(76) (N)	m1 A1	Provided both M's awarded, FT their <i>X</i> and <i>Y</i> cao
	$\begin{array}{c} \alpha \\ \gamma \\ Y = 10 \end{array} \qquad $		
	$\tan \alpha = \frac{10}{60}$	m1	Provided both M's awarded, FT their X and Y
	$\alpha = 9 \cdot 46(23 \dots)^{\circ}$ below the horizontal	A1	сао
		[8]	
	Total for Question 4	12	

Q5	Solution	Mark	Notes
(a)	$u_{A}\mathbf{i} - 5\mathbf{j}$ $u_{A}\mathbf{i} - 5\mathbf{j}$ $\mathbf{i} + 3\mathbf{j}$ $\mathbf{i} + 3\mathbf{j}$ $\mathbf{u}_{B}\mathbf{i} + 3\mathbf{j}$		Before collision After collision $e = \frac{2}{5}$
	Con. of momentum (along line of centres)	M1	Attempted. Allow 1 sign error.
	$4u_A + 2u_B = 4(-2) + 2(1)$	A1	$4(u_{A}i - 5j) + 2(u_{B}i + 3j) = 4(-2i - 5j) + 2(i + 3j)$ All correct, oe
	$(2u_A + u_B = -3) \qquad \qquad 4u_A \mathbf{i} + 2u_B \mathbf{i} = -6\mathbf{i}$		Condone i's, i.e.
	Restitution (along line of centres)	M1	Attempted. Allow 1 sign error.
	$(1) - (-2) = -\frac{2}{5}(u_B - u_A)$	A1	All correct, condone i's,
	$(2u_A - 2u_B = 15) \qquad \qquad 4u_A \mathbf{i} + 2u_B \mathbf{i} = -6\mathbf{i}$		$\frac{2}{5} = -\frac{1-2}{u_B - u_A} = \frac{1-2}{u_A - u_B}$
	Solving equations	m1	One variable eliminated
	$u_A = \frac{3}{2} \qquad \qquad u_B = -6$		
	Velocities before collision		
	Sphere $A = \frac{3}{2}i - 5j$ (ms ⁻¹)	A1	сао
	Sphere $B = -6i + 3j$ (ms ⁻¹)	A1 [7]	сао
(b)	Wall is parallel to vector i since impulse only has a j component	B1 [1]	Parallel to vector i since No i component No momentum in i direction Perpendicular to wall
(c)	Impulse, $I = change$ in momentum 32j = 4v - 4(-2i - 5j)	M1	Used, $32\mathbf{j} = -4\mathbf{v} + 4(-2\mathbf{i} - 5\mathbf{j})$ $32 = 4\mathbf{v} - 4(-5)$
	$\mathbf{v} = -2\mathbf{i} + 3\mathbf{j}$	A1	Condone j's on the above
	speed = $\sqrt{2^2 + 3^2}$ = $\sqrt{13}$ (ms ⁻¹) or = 3.60(55)	B1	FT their $\sqrt{13}$ derived from
	- vis (ms) or - 5 00(55)	[3]	$\mathbf{v} = -2\mathbf{i} + a\mathbf{j}, \ a \neq 0$
(d)	Loss in KE = $\frac{1}{2}(4)(2^2 + 5^2) - \frac{1}{2}(4)(\sqrt{13}^2)$ OR Loss in KE = $\frac{1}{2}(4)(5^2) - \frac{1}{2}(4)(3^2)$	M1	Difference in KE, any order At least one v^2 correct
	Loss in $KE = 32$ (J)	A1 [2]	FT provided loss (in KE) >0
	Total for Question 5	13	

Q6	Solution	Mark	Notes
	$A \xrightarrow{l=0.8}_{y} \xrightarrow{p} \xrightarrow{l=1.2}_{\lambda=30} B$		$AB = 2 \cdot 8 \text{ m}$
(a)	Let $AC = y$		Use of Hooke's Law
	$T_A = \frac{60(y - 0.8)}{0.8} \qquad (= 75y - 60)$	M1	Any algebraic extension/distance
	$T_B = \frac{30(2\cdot 8 - 1\cdot 2 - y)}{1\cdot 2} (= 40 - 25y)$	A1	T_B or T_A correct
	In equilibrium, $T_A = T_B$	m1	
	$\frac{60(y-0.8)}{0.8} = \frac{30(2.8-1.2-y)}{1.2}$		
	75y - 60 = 40 - 25y		
	y = 1 (m)	A1	Convincing
		[4]	
(b)	$A \xrightarrow{l = 0 \cdot 8, 0 \cdot 2}_{1 x 1 \cdot 8 - x} B$		$AB = 2 \cdot 8 \text{ m}$
	(i) Let x denote the displacement of P from C		
	$T_A = \frac{60(0.2+x)}{0.8} \qquad (= 15 + 75x)$	B1	either term, oe
	$T_B = \frac{30(0-x)}{1\cdot 2} \qquad (= 15 - 25x)$	М1	Dim correct
	$T_{-} = T_{-} = 4 \frac{\mathrm{d}^2 x}{\mathrm{d}^2 x}$	A1	T_B, T_A opposing
	$I_B = I_A - F_{dt^2}$		
	$\frac{30(0.8-x)}{1.2} - \frac{60(0.2+x)}{0.8} = 4\frac{d^2x}{dt^2}$		
	$-100x = 4\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -25x$	A1	Allow for any defined x, e.g. $d^2x = 25(x - 1)$
	\therefore SHM with $\omega = 5$ (with centre at <i>C</i>)	B1	$\frac{dt^2}{dt^2} = -25(x-1)$ Must come from $\frac{x}{x} - \frac{\omega^2 x}{\omega^2}$
	$Period = \frac{2\pi}{\omega} = \frac{2\pi}{5}$	B1	FTω

(ii) Amplitude,
$$a = 1 \cdot 4 - 1 = 0 \cdot 4$$
 (m)
Using $x = \pm a \cos \omega t$ with $a = 0 \cdot 4$, $\omega = 5$
 $-0 \cdot 2 = 0 \cdot 4 \cos 5t$
 $t = \frac{2\pi}{15} = 0 \cdot 418(879 \dots)$ (s)
Total for Question 6
14
B1
M1
Allow $x = \pm a \sin(\omega t)$
FT a and ω
FT for $-0 \cdot 2 = a \cos \omega t$
[10]

Q6	Alternative Solution	Mark	Notes
	$A \xrightarrow{l=0.8} e \xrightarrow{P} \xrightarrow{l=1.2} B$		$AB = 2 \cdot 8 \text{ m}$
(a)	Let $e = extension$ in AP		Use of Hooke's Law
	$T_A = \frac{60}{0.8}e$ (= 75 <i>e</i>)	M1	Any algebraic
	$T_B = \frac{30(0\cdot 8 - e)}{1\cdot 2} \qquad (= 20 - 25e)$	A1	T_B or T_A correct
	In equilibrium, $T_A = T_B$	m1	
	$\frac{60}{0\cdot 8}e = \frac{30(0\cdot 8-e)}{1\cdot 2}$		
	$75e = 20 - 25e \qquad \Rightarrow \qquad e = 0 \cdot 2$		
	$AC = 0 \cdot 8 + 0 \cdot 2 = 1$ (m)	A1	Convincing
		[4]	

Q6	Alternative Solution	Mark	Notes
(b)	$A \xrightarrow{l = 0.8, 0.2} 0.6 \xrightarrow{l = 1.2} B$ $A \xrightarrow{1.4-x} x \xrightarrow{1.4} 1.4$ $2 \cdot 8 - x$		$AB = 2 \cdot 8 \text{ m}$
	 (i) Let x denote the displacement of P from the midpoint of AB A 		
	$T_A = \frac{60(1\cdot 4 - 0\cdot 8 - x)}{0\cdot 8}$ $T_A = \frac{60(x - 0\cdot 8)}{0\cdot 8}$	B1	$T_A = 45 - 75x$ or $75x - 60$ either term, oe
	$T_B = \frac{30(1 \cdot 4 - 1 \cdot 2 + x)}{1 \cdot 2} \qquad T_B = \frac{30(2 \cdot 8 - 1 \cdot 2 - x)}{1 \cdot 2}$		$T_B = 5 + 25x$ or $40 - 25x$
	Apply N2L to P,	M1	Dim. correct.
	$4\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \begin{cases} T_A - T_B \\ T_B - T_A \end{cases}$	A1	I_B, I_A opposing
	$4\frac{d^2x}{dt^2} = \begin{cases} \frac{60(1\cdot4-0\cdot8-x)}{0\cdot8} - \frac{30(1\cdot4-1\cdot2+x)}{1\cdot2} \\ \frac{30(2\cdot8-1\cdot2-x)}{1\cdot2} - \frac{60(x-0\cdot8)}{0\cdot8} \end{cases}$		
	$4\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \begin{cases} 40 - 100x\\ 100 - 100x \end{cases}$		
	$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \begin{cases} -25(x-0\cdot 4) \\ -25(x-1) \end{cases}$	A1	
	: SHM with $\omega = 5$ (with centre at $x = 0 \cdot 4$, i.e. C)	B1	
	Period $=\frac{2\pi}{\omega}=\frac{2\pi}{5}$	B1	FT ω
	(ii) Amplitude, $a = 1 \cdot 4 - 1 = 0 \cdot 4$ (m)	B1	
	Using $x - 0 \cdot 4 = \pm a \cos \omega t$ with $a = 0 \cdot 4$, $\omega = 5$	M1	Allow $x = \pm a \sin(\omega t)$ ET <i>a</i> and ω
	$0\cdot 6 - 0\cdot 4 = -0\cdot 4 \cos 5t$	A1	FT RHS with $x = 1 \cdot 4 - 0 \cdot 8$
	$t = \frac{2\pi}{15} = 0 \cdot 418(879\dots) $ (s)	A1	сао
	OR		
	Using $x - 1 = \pm a \cos \omega t$ with $a = 0 \cdot 4$ $\omega = 5$	(M1)	
	$0 \cdot 8 = 1 + 0 \cdot 4 \cos 5t$	(A1)	
	$-0 \cdot 2 = 0 \cdot 4 \cos 5t$		
	$t = \frac{2\pi}{15} = 0 \cdot 418(879\dots) (s)$	(A1)	
		[10]	
	Total for Question 6	14	

1305U60-1 WJEC GCE A Level Further Mathematics - Unit 6 Further Mechanics B MS S22/CB