GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW)
MATHEMATICS
UNIT 1 PURE MATHEMATICS A 2300U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS MATHEMATICS

UNIT 1 PURE MATHEMATICS A

SUMMER 2022 MARK SCHEME

Q Solution
$1 \quad y=\ln x$

Mark Notes

B1 Allow $y=\log _{e} x$
May be seen on graph

B1 graph of $y=\mathrm{e}^{x}$ and $(0,1)$
B1 graph of $y=\ln x$ and (1,0)

If B0 B0
SC1 both graphs correctly drawn, but intercepts missing or incorrect

SC1 correct intercepts but incorrect graphs

Q Solution
$2 \quad 5 \sqrt{48}=20 \sqrt{3}$
$(2 \sqrt{3})^{3}=24 \sqrt{3}$
$\frac{2+5 \sqrt{3}}{5+3 \sqrt{3}}=\frac{(2+5 \sqrt{3})(5-3 \sqrt{3})}{(5+3 \sqrt{3})(5-3 \sqrt{3})}$

$$
=-\frac{1}{2}(10-6 \sqrt{3}+25 \sqrt{3}-45)
$$

$$
=-\frac{1}{2}(19 \sqrt{3}-35)
$$

Expression $=\frac{1}{2}(35-27 \sqrt{3})$

Mark Notes

B1
B1
M1 multiplying by conjugate M0 if multiplying by conjugate not shown

A1 for numerator
A1 for denominator (25-27)

A1 cao, any correct simplified form

Q Solution

3(a) Grad. of $L_{1}=\frac{\text { increase in } y}{\text { increase in } x}$
Grad. of $L_{1}=\frac{-1-5}{3-0}=-2$
Equ of L_{1} is $y-5=-2 x$
$y+2 x=5$

3(b) $y=\frac{1}{2} x$

3(c) At $C, \frac{1}{2} x+2 x=5$
$x=2, y=1$
C is the point $(2,1)$
Area $O A C=\frac{1}{2} \times O A \times(x$-coord of $C)$
Area $O A C=\left(\frac{1}{2} \times 5 \times 2\right)=5$
OR
Area $O A C=\frac{1}{2} \times O C \times A C$
$O C=\sqrt{2^{2}+1^{2}}=\sqrt{5}$
$A C=\sqrt{2^{2}+4^{2}}=\sqrt{20}=2 \sqrt{5}$
Area $O A C=\left(\frac{1}{2} \times \sqrt{5} \times 2 \sqrt{5}\right)=5$

Mark Notes

M1

A1

A1 any correct form
Mark final answer

B1 $\quad \mathrm{ft} \operatorname{grad} L_{1}$
any correct form
Mark final answer

M1 oe

A1 ft their (a) and (b)

M1

A1 ft their ' x-coord of C '
(A1) ft their coordinates of C

Q Solution

3(d) Gradient of $L_{3}=-2$
Either
Equ of L_{3} is $y-2=-2(x-4)$
A1 ft their gradient of L_{1} any correct form ISW

OR
Equ of L_{3} is $y=-2 x+\mathrm{c}$
$2=-2 \times 4+c$
$\mathrm{c}=10$
Equ of L_{3} is $y=-2 x+10$

3(e) Using similar triangles,
Area $O D E=2^{2} \times 5=20$
OR
Area $=\frac{1}{2} \times O E \times(x$-coord of $D)$
Area $=\frac{1}{2} \times 10 \times 4=20$

B1 ft their (c)

Q Solution

4

$$
\begin{aligned}
& x^{2}+3 x-6>4 x-4 \\
& x^{2}-x-2(>0)
\end{aligned}
$$

$$
(x+1)(x-2)(>0)
$$

Critical values, -1 and 2
$x<-1$ or $x>2$

Mark Notes

M1 oe Allow 1 slip terms all collected on one side

A1 si condone ' $=$ '
ft their quadratic
A1 si cao
A1 ft their critical values condone ',', or nothing A0 for 'and'
Mark final answer

Solution

$$
\text { 5(a) } \begin{aligned}
& -x^{2}+2 x+3=x^{2}-x-6 \\
& 2 x^{2}-3 x-9=0 \\
& (2 x+3)(x-3)=0 \\
& x=-\frac{3}{2}, 3 \\
& y=-\frac{9}{4}, 0 \\
& A\left(-\frac{3}{2},-\frac{9}{4}\right) \quad B(3,0)
\end{aligned}
$$

5(b)

Mark Notes

A1 or one correct pair
A0 A0 if no workings seen
A1 all correct
or other way round
If 0 marks, award SC 1 for sight of $(3,0)$

M1 at least one quadratic curve
A1 one cup, one hill
A1 graphs all correct with correct points of intersection
FT points of intersection where possible

5(c) Area enclosed by curves to the right of the y-axis ft for equivalent diagram
B1 for 1 correct region
B1 for $2^{\text {nd }}$ correct region
-1 for each additional incorrect region

6(a) Statement B is false
Two negative numbers:
Correct choice of numbers, eg
$x=-25, y=-4$,
M1
Correct verification, eg
$x+y=-29$
$2 \sqrt{x y}=2 \times \sqrt{(-25) \times(-4)}$
A1 both substitutions
$2 \sqrt{x y}=20$
Since $-29<20$ statement B is false.
A1 oe

One positive number, one negative number:
Correct choice of numbers, eg
$x=1, y=-4$,
Correct verification, eg
$x+y=-3$
$2 \sqrt{x y}=2 \times \sqrt{(1) \times(-4)}$
(A1) both substitutions
$2 \sqrt{x y}=2 \sqrt{-4}$
$2 \sqrt{-4}$ is not real, statement B is false.
(A1) oe

6(b) Statement A is true
Either

$$
x^{2}+y^{2} \geq 2 x y
$$

$x^{2}-2 x y+y^{2} \geq 0$
M1
$(x-y)^{2} \geq 0$, which is always true
A1
Therefore, Statement A is true
OR
Consider $(x-y)^{2} \geq 0$
$x^{2}-2 x y+y^{2} \geq 0$
$x^{2}+y^{2} \geq 2 x y$

Q Solution

7(a) $\quad A(2,3)$
A correct method for finding the radius,
e.g., $(x-2)^{2}+(y-3)^{2}=4^{2}$

Radius $=4$

7(b) At points of intersection
$x^{2}+(x+5)^{2}-4 x-6(x+5)-3=0$
$2 x^{2}-8=0$
$x=-2,2$
$y=3,7$
$P(-2,3)$
$Q(2,7)$

7(c) Attempt to find, B, the midpoint of $P Q$
$B(0,5)$
$P B=\sqrt{(-2-0)^{2}+(3-5)^{2}}=\sqrt{8}=2 \sqrt{2}$
OR
$P B=\frac{1}{2} P Q=\frac{1}{2} \sqrt{(-2-2)^{2}+(3-7)^{2}}$
$P B=\frac{1}{2} 4 \sqrt{2}$
$P B=2 \sqrt{2}$

M1
A1

A1 ft their P and Q
Mark Notes

B1
-

A1 oe or $2 y^{2}-20 y+42=0$
All terms collected
A1 \quad or $y=3,7$
or 1 correct pair
A1 \quad or $x=-2,2$
all correct
or $P(2,7), Q(-2,3)$

M1 $\quad \mathrm{ft}$ their P and Q
(A1) $\quad \mathrm{ft}$ their P and Q

7(d) \quad Area $=$ quarter circle - triangle $A P Q$
Area $=\frac{1}{4} \times \pi \times 4^{2}-\frac{1}{2} \times 4 \times 4$
Area $=4 \pi-8$
Q Solution

8(a)

8(b) Mary's pay $=120 \times \frac{2}{3}$

Mary's pay $=£ 80$

8(c) $\quad P=1013 \times 0.88 \frac{H}{1000}$
When $H=8848, P=1013 \times 0.88^{\frac{8848}{1000}}$
$P=326.8828$ or 327 (units)

B1 Straight line through the origin, positive or negative gradient

M1 Divide by 3
oe e.g. $3 m=120$
M1 oe \times by 2
A1
Unsupported answer of $£ 80$ award M1A1A1

B1
M1 e.g. $P=1013 \times 0.88^{H}$
Allow $P=1013 \times 0.988^{H}$
A1 Allow answers in the range 324 to 330

Q Solution

9 Discriminant $=(2 k)^{2}-4 \times 1 \times 8 k$
Discriminant $=4 k^{2}-32 k$
If no real roots, discriminant < 0
$k(k-8)<0$
Critical values, $k=0,8$
$0<k<8$

Mark Notes

B1 An expression for $b^{2}-4 a c$

M1 May be implied by later work M0 if discriminant given in terms of k and x

B1 sift their quadratic discriminant if B0 awarded previously

A1 ft their 2 critical values provided M1 awarded

Q Solution
$10 \quad \ln 2^{x}=\ln 53$
$x \ln 2=\ln 53$
$x=\frac{\ln 53}{\ln 2}$
$x=5.727920455$
$x=5.73$

Mark Notes

M1 taking \ln or log to any base of both sides.

A1 use of power law

A1 cao Must be to 2dp

Note:

- No workings M0
- $x=\log _{2} 53$, award M1A1

Q Solution

11(a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=10+6 x-3 x^{2}$
Attempt to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=2$
Grad of tangent at $C=10$
Equation of tangent at C is
$y-24=10(x-2)$
$y=10 x+4$
D is the point $(0,4)$

11(b) Area of trapezium $=\frac{1}{2}(4+24) \times 2(=28)$
A under curve $=\int_{0}^{2}\left(10 x+3 x^{2}-x^{3}\right) \mathrm{d} x$
$=\left[5 x^{2}+x^{3}-\frac{x^{4}}{4}\right]_{0}^{2}$
$=(20+8-4)-(0)$

$$
(=24)
$$

Shaded area $=$ area $($ trap - under curve $) \quad \mathrm{ml}$
Shaded area $=4$
A1
cao

Note: Must be supported by workings

Q Solution

11(c) $\frac{\mathrm{d} y}{\mathrm{~d} x}=10+6 x-3 x^{2}$
At stationary points, $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
$10+6 x-3 x^{2}=0$
$3 x^{2}-6 x-10=0$
$x=\frac{6 \pm \sqrt{(-6)^{2}-4 \times 3 \times(-10)}}{6}$
$x=-1.08,3.08$ or $\frac{3 \pm \sqrt{39}}{3}$
Required range is $-1.08<x<3.08$

Alternative Solution

11(c) $f^{\prime}(x)=10+6 x-3 x^{2}$
For increasing function, $f^{\prime}(x)>0$
$10+6 x-3 x^{2}>0$
$3 x^{2}-6 x-10<0$
$x=\frac{6 \pm \sqrt{(-6)^{2}-4 \times 3 \times(-10)}}{6}$
$x=-1.08,3.08 \quad$ or $\frac{3 \pm \sqrt{39}}{3}$
Required range is $-1.08<x<3.08$
m1 attempt to solve quadratic

A1 any correct form

A1

FT their $f^{\prime}(x)$ where possible
(m1) attempt to solve quadratic
(A1) any correct form
(A1)

Q Solution

12(a) $f(x)=2 x^{3}-x^{2}-5 x-2$
$f(-1)=-2-1+5-2=0$
$(x+1)$ is a factor
$f(x)=(x+1)\left(2 x^{2}+p x+q\right)$
$f(x)=(x+1)\left(2 x^{2}-3 x-2\right)$
$f(x)=(x+1)(2 x+1)(x-2)$
$x=-1,-\frac{1}{2}, 2$
Note:

- Answers only with no workings 0 marks
- * $f(x)=(x-2)\left(2 x^{2}+3 x+1\right)$
- $\quad f(x)=(2 x+1)\left(x^{2}-x-2\right)$

12(b) $\cos \left(2 \theta-51^{\circ}\right)=0.891$
$2 \theta-51^{\circ}=27^{\circ},\left(-27^{\circ}\right)$
$\theta=39^{\circ}$
$\theta=12^{\circ}$

Mark Notes

M1 at least one of p, q correct
A1 oe (see note below*) cao
$\mathrm{m} 1 \quad$ coeffs of x^{2} multiply to give 2 constant terms multiply to their q or formula with correct a, b, c

A1 cao

one use of factor theorem

oe

-

Q Solution

13 Required term $=\binom{5}{3}(2)^{5-3}(-3)^{3}$
B1 $\quad\binom{5}{3}$ oe
B1 (2) ${ }^{5-3}$ oe
B1 $(-3)^{3}$ oe
Required term $=10 \times 4 \times(-27)$
Required term $=-1080$
B1 ISW

Q Solution

14(a) Attempt to differentiate

$$
\begin{aligned}
& f^{\prime}(x)=9 x^{2}-10 x+1 \\
& 9 x^{2}-10 x+1=0 \\
& (9 x-1)(x-1)=0 \\
& x=\frac{1}{9}, y=-\frac{1445}{243}=-5.9465 \\
& x=1, y=-7 \\
& f^{\prime \prime}(x)=18 x-10 \\
& x=\frac{1}{9},(f(x)=-5.9465) \text { is a maximum } \\
& x=1,(f(x)=-7) \text { is a minimum }
\end{aligned}
$$

Mark Notes

M1
A1
m1

A1 or $x=\frac{1}{9}, 1$

A1 all correct
M1 oe ft quadratic $f^{\prime}(x)$

A1 ft their x value

A1 $\quad \mathrm{ft}$ their x value provided different conclusion

Note: if $f^{\prime \prime}(x)$ is incorrectly found from their $f^{\prime}(x)$, maximum marks M1A1A0

14(b)(i)Rewriting the equation
To give $f(x)=3 x^{3}-5 x^{2}+x-6$ on one side. M1
oe
$3 x^{3}-5 x^{2}+x-6=-7$,

2 (distinct roots)

14(b)(ii) To give $f(x)=3 x^{3}-5 x^{2}+x-6$ on one side M1 oe
$3 x^{3}-5 x^{2}+x-6=-6.5$

3 (distinct roots)

Note: $14 \mathrm{~b}-0$ marks for unsupported answers
$4 y=x^{2}$
$\log _{a}\left(\frac{y}{x+3}\right)=\log _{a} 1$
$y=x+3$
$4 y=4 x+12=x^{2}$
$x^{2}-4 x-12=0$
$(x+2)(x-6)=0$
$x=-2,6$
$y=1,9$
$x=-2$ and $y=1, x=6$ and $y=9$

OR
$3\left(2 \log _{a} x+\log _{a} y\right)-2\left(\log _{a} x+\log _{a} y\right)$

$$
+\log _{a} 9-2\left(\log _{a} x+\log _{a} y\right)=\log _{a} 36
$$

$2 \log _{a} x-\log _{a y}=\log _{a} 4$
$\log _{a} y-\log _{a}(x+3)=0$
$2 \log _{a} x-\log _{a}(x+3)=\log _{a} 4$
$x^{2}-4 x-12=0$
$(x+2)(x-6)=0$
$x=-2,6$
$y=1,9$
$x=-2$ and $y=1, x=6$ and $y=9$

Mark Notes

B1 one use of subtraction law

B1 one use of addition law
B1 one use of power law
B1 oe for a correct equation after the removal of logs
(B1) for use of the subtraction law if not previously awarded.

B1 or $x=y-3$
M1 or $4 y=(y-3)^{2}$
or $y^{2}-10 y+9=0$
or $(y-1)(y-9)=0$
A1 \quad cao or $y=1,9$ or 1 correct pair

A1 cao or $x=-2,6$ all correct
(B1B1B1) one for each use of laws
(B1) correct equation
(M1) solve simultaneously

Q Solution
16(a) $|\mathbf{a}|=\sqrt{2^{2}+1^{2}}$
$|\mathbf{a}|=\sqrt{5}$
Required unit vector $=\frac{1}{\sqrt{5}}(2 \mathbf{i}-\mathbf{j})$

16(b) $\theta=\tan ^{-1}(\pm 3)$
$\theta=(\pm) 71.6^{\circ}\left(288.4^{\circ}\right)$

16(c)(i) $\mu \mathbf{a}+\mathbf{b}=\mu(2 \mathbf{i}-\mathbf{j})+(\mathbf{i}-3 \mathbf{j})$
$\mu \mathbf{a}+\mathbf{b}=(2 \mu+1) \mathbf{i}-(\mu+3) \mathbf{j}$

16(c)(ii)If parallel to $4 \mathbf{i}-5 \mathbf{j}$,
$(2 \mu+1) \mathbf{i}-(\mu+3) \mathbf{j}=k(4 \mathbf{i}-5 \mathbf{j})$
$2 \mu+1=4 k$ and $\mu+3=5 k$
Solving simultaneously
$\left(k=\frac{5}{6}\right)$
$\mu=\frac{7}{6}$

Alternative solution

If parallel to $4 \mathbf{i}-5 \mathbf{j}$,
$\frac{2 \mu+1}{\mu+3}=\frac{4}{5}$
$10 \mu+5=4 \mu+12$
$6 \mu=7$
$\mu=\frac{7}{6}$

A1
Mark Notes
M1 correct method

M1
A1 Accept 72° or 288°

B1 Mark final answer

M1 \quad or $k((2 \mu+1) \mathbf{i}-(\mu+3) \mathbf{j})=(4 \mathbf{i}-5 \mathbf{j})$
Both sides in terms of \mathbf{i} and \mathbf{j}
A1 $\mathrm{ft}(\mathrm{c})(\mathrm{i})$
m1 any correct method

A1 cao
(M1A1) ft (c)(i)
(m1)
(A1) cao

