wjec cbac

GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW) MATHEMATICS UNIT 1 PURE MATHEMATICS A 2300U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS MATHEMATICS

UNIT 1 PURE MATHEMATICS A

SUMMER 2022 MARK SCHEME

Q Solution

Mark Notes

1 $y = \ln x$

B1 Allow $y = \log_e x$

May be seen on graph

- B1 graph of $y = e^x$ and (0,1)
- B1 graph of $y = \ln x$ and (1,0)

<u>If B0 B0</u>

SC1 both graphs correctly drawn, but intercepts missing or incorrect

OR

SC1 correct intercepts but incorrect graphs

$$2 \qquad 5\sqrt{48} = 20\sqrt{3}$$

$$(2\sqrt{3})^3 = 24\sqrt{3}$$

$$\frac{2+5\sqrt{3}}{5+3\sqrt{3}} = \frac{(2+5\sqrt{3})(5-3\sqrt{3})}{(5+3\sqrt{3})(5-3\sqrt{3})}$$

$$= -\frac{1}{2}(10 - 6\sqrt{3} + 25\sqrt{3} - 45)$$

$$= -\frac{1}{2}(19\sqrt{3} - 35)$$

Expression $= \frac{1}{2}(35 - 27\sqrt{3})$

B1

B1

M 1	multiplying by conjugate
	M0 if multiplying by conjugate
	not shown

A1 for numerator

A1 for denominator (25 - 27)

A1 cao, any correct simplified form

3(a) Grad. of
$$L_1 = \frac{\text{increase in } y}{\text{increase in } x}$$
 M1
Grad. of $L_1 = \frac{-1-5}{3-0} = -2$ A1
Equ of L_1 is $y - 5 = -2x$ A1 any correct form
Mark final answer

y + 2x = 5

3(b)
$$y = \frac{1}{2}x$$

B1 ft grad L_1
any correct form
Mark final answer

3(c) At
$$C$$
, $\frac{1}{2}x + 2x = 5$
 $x = 2, y = 1$
C is the point (2, 1)
Area $OAC = \frac{1}{2} \times OA \times (x \text{-coord of } C)$
Area $OAC = (\frac{1}{2} \times 5 \times 2) = 5$
OR
Area $OAC = (\frac{1}{2} \times 5 \times 2) = 5$
A1 ft their 'x-coord of C'
OR
Area $OAC = \frac{1}{2} \times OC \times AC$
(M1)
 $OC = \sqrt{2^2 + 1^2} = \sqrt{5}$
 $AC = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$
Area $OAC = (\frac{1}{2} \times \sqrt{5} \times 2\sqrt{5}) = 5$
(A1) ft their coordinates of C

© WJEC CBAC Ltd.

Ç	2	Solution	Mark	Notes
3	(d)	Gradient of $L_3 = -2$ Either	M1	
		Equ of L_3 is $y - 2 = -2(x - 4)$	A1	ft their gradient of <i>L</i> ₁ any correct form ISW
		OR		
		Equ of L_3 is $y = -2x + c$		
		$2 = -2 \times 4 + c$		
		c = 10		
		Equ of L_3 is $y = -2x + 10$	(A1)	ft their gradient of L_1

3(e)	Using similar triangles,	
	Area $ODE = 2^2 \times 5 = 20$	B1
	OR	
	Area = $\frac{1}{2} \times OE \times (x$ -coord of D)	

Area
$$=\frac{1}{2} \times 10 \times 4 = 20$$
 (B1)

ft their (c)

4
$$x^2 + 3x - 6 > 4x - 4$$

 $x^2 - x - 2 (> 0)$
M1 oe Allow 1 slip
terms all collected on one side
(x + 1)(x - 2) (> 0)
A1 si condone '='
ft their quadratic
Critical values, -1 and 2
 $x < -1$ or $x > 2$
A1 ft their critical values
condone ',', or nothing
A0 for 'and'
Mark final answer

M1

5(a)
$$-x^{2} + 2x + 3 = x^{2} - x - 6$$

 $2x^{2} - 3x - 9 = 0$
 $(2x + 3)(x - 3) = 0$
 $x = -\frac{3}{2}, 3$

$$y = -\frac{9}{4}, 0$$

 $A(-\frac{3}{2}, -\frac{9}{4}) \qquad B(3,0)$

A1 or one correct pair
A0 A0 if no workings seen
A1 all correct
or other way round
If 0 marks, award SC1 for sight of (3,0)

5(b)

- M1 at least one quadratic curve
- A1 one cup, one hill
- A1 graphs all correct with correct points of intersection FT points of intersection where possible

- 5(c) Area enclosed by curves to the right of the *y*-axis
- ft for equivalent diagram
- B1 for 1 correct region
- B1 for 2nd correct region -1 for each additional incorrect region

Q Solution

6(a)	Statement B is false		
	Two negative numbers:		
	Correct choice of numbers, eg		
	x = -25, y = -4,	M1	
	Correct verification, eg		
	x + y = -29		
	$2\sqrt{xy} = 2 \times \sqrt{(-25) \times (-4)}$	A1	both substitutions
	$2\sqrt{xy} = 20$		
	Since $-29 < 20$ statement <i>B</i> is false.	A1	oe

One positive number, one negative number:

Correct choice of numbers, eg

$$x = 1, y = -4,$$
 (M1)

Correct verification, eg

$$x + y = -3$$

$$2\sqrt{xy} = 2 \times \sqrt{(1) \times (-4)}$$
(A1) both substitutions
$$2\sqrt{xy} = 2\sqrt{-4}$$

$$2\sqrt{-4}$$
 is not real, statement *B* is false. (A1) oe

6(b)	Statement A is true	
	Either	
	$x^2 + y^2 \ge 2xy$	
	$x^2 - 2xy + y^2 \ge 0$	M1
	$(x-y)^2 \ge 0$, which is always true	A1
	Therefore, Statement A is true	
OR		
	Consider $(x - y)^2 \ge 0$	(M1)

$$x^{2} - 2xy + y^{2} \ge 0$$

$$x^{2} + y^{2} \ge 2xy$$
(A1)

Q	Solution	Mark	Notes
7(a)	<i>A</i> (2, 3) A correct method for finding the radius,	B1	
	e.g., $(x-2)^2 + (y-3)^2 = 4^2$	M1	
	Radius $= 4$	A1	
7(b)	At points of intersection		
	$x^{2} + (x+5)^{2} - 4x - 6(x+5) - 3 = 0$	M1	
	$2x^2 - 8 = 0$	A1	oe or $2y^2 - 20y + 42 = 0$ All terms collected
	<i>x</i> = -2, 2	A1	or $y = 3, 7$ or 1 correct pair
	<i>y</i> = 3, 7	A1	or $x = -2, 2$ all correct
	P(-2, 3) $Q(2,7)$		or <i>P</i> (2,7), <i>Q</i> (-2, 3)
7(c)	Attempt to find, <i>B</i> , the midpoint of <i>PQ</i>	M1	ft their P and Q
/(0)			it then I tund g
	<i>B</i> (0, 5)		
	$PB = \sqrt{(-2-0)^2 + (3-5)^2} = \sqrt{8} = 2\sqrt{2}$	A1	ft their P and Q
	OR		
	$PB = \frac{1}{2}PQ = \frac{1}{2}\sqrt{(-2-2)^2 + (3-7)^2}$	(M1)	
	$PB = \frac{1}{2} 4\sqrt{2}$		
	$PB = 2\sqrt{2}$	(A1)	ft their P and Q

7(d) Area = quarter circle – triangle
$$APQ$$

Area =
$$\frac{1}{4} \times \pi \times 4^2 - \frac{1}{2} \times 4 \times 4$$

Area = $4\pi - 8$

Q Solution answer given

M1

A1

Mark Notes

- Straight line through the **B**1 origin, positive or negative gradient
- 8(b) Mary's pay = $120 \times \frac{2}{3}$ Divide by 3 M1 oe e.g. 3m = 120oe \times by 2

Mary's pay = $\pounds 80$

A1 Unsupported answer of £80

award M1A1A1

8(c)
$$P = 1013 \times 0.88^{\frac{H}{1000}}$$

When $H = 8848$, $P = 1013 \times 0.88^{\frac{8848}{1000}}$
 $P = 326.8828$ or 327 (units)

B1

M1

e.g. $P = 1013 \times 0.88^{H}$ M1 Allow $P = 1013 \times 0.988^{H}$

Allow answers in the range A1 324 to 330

Q	Solution	Mark	Notes
9	Discriminant = $(2k)^2 - 4 \times 1 \times 8k$	B1	An expression for $b^2 - 4ac$
	Discriminant = $4k^2 - 32k$		
	If no real roots, discriminant < 0	M1	May be implied by later work M0 if discriminant given in terms of <i>k</i> and <i>x</i>
	k(k-8) < 0		
	Critical values, $k = 0, 8$	B1	si ft their quadratic discriminant if B0 awarded previously
	0< <i>k</i> < 8	A1	ft their 2 critical values provided

M1 awarded

Q	Solution	Mark	Notes
10	$\ln 2^x = \ln 53$	M1 of bot	taking ln or log to any base h sides.
	$x \ln 2 = \ln 53$	A1	use of power law
	$x = \frac{\ln 53}{\ln 2}$		
	<i>x</i> = 5.727920455		
	<i>x</i> = 5.73	A1	cao Must be to 2dp

Note:

- No workings M0
- $x = \log_2 53$, award M1A1

Q Solution Mark Notes

11(a)
$$\frac{dy}{dx} = 10 + 6x - 3x^2$$
M1At least one correctAttempt to find $\frac{dy}{dx}$ at $x = 2$ m1Grad of tangent at $C = 10$ A1caoEquation of tangent at C ism1oe $y - 24 = 10(x - 2)$ m1oe $y = 10x + 4$ A1cao

11(b) Area of trapezium =
$$\frac{1}{2}(4 + 24) \times 2 (= 28)$$

A under curve = $\int_0^2 (10x + 3x^2 - x^3) dx$

 $=\left[5x^2+x^3-\frac{x^4}{4}\right]_0^2$

=(20+8-4)-(0)

ft their D(0,k), 0 < k < 24

attempt to integrate, at least one term correct, limits not required

term

A1	correct integration, limits not
	required

cao

B1

M1

Note: Must be supported by workings

(= 24) Shaded area = area (trap – under curve) m1Shaded area = 4

14

A1

11(c)
$$\frac{dy}{dx} = 10 + 6x - 3x^2$$

At stationary points, $\frac{dy}{dx} = 0$
 $10 + 6x - 3x^2 = 0$
 $3x^2 - 6x - 10 = 0$
 $x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times (-10)}}{6}$
 $x = -1.08, 3.08$ or $\frac{3 \pm \sqrt{39}}{3}$
Required range is $-1.08 < x < 3.08$

FT their
$$\frac{dy}{dx}$$
 where possible

M1

A1

(A1)

m1	attempt to solve quadratic

A1 any correct form

Alternative Solution

11(c)
$$f'(x) = 10 + 6x - 3x^2$$

For increasing function, $f'(x) > 0$ (M1)
 $10 + 6x - 3x^2 > 0$
 $3x^2 - 6x - 10 < 0$
 $x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 3 \times (-10)}}{6}$ (m1) attempt to solve quadratic
 $x = -1.08, 3.08$ or $\frac{3 \pm \sqrt{39}}{3}$ (A1) any correct form

Required range is -1.08 < x < 3.08

12(a)
$$f(x) = 2x^{3} - x^{2} - 5x - 2$$
$$f(-1) = -2 - 1 + 5 - 2 = 0$$
$$(x + 1) \text{ is a factor}$$
$$f(x) = (x + 1)(2x^{2} + px + q)$$
$$f(x) = (x + 1)(2x^{2} - 3x - 2)$$
$$f(x) = (x + 1)(2x + 1)(x - 2)$$

$$x = -1, -\frac{1}{2}, 2$$

Note:

• Answers only with no workings 0 marks

•
$$*f(x) = (x-2)(2x^2 + 3x + 1)$$

• $*f(x) = (2x+1)(x^2 - x - 2)$

12(b)
$$\cos(2\theta - 51^\circ) = 0.891$$

 $2\theta - 51^{\circ} = 27^{\circ}, (-27^{\circ})$ **B**1

$$\theta = 39^{\circ}$$

 $\theta = 12^{\circ}$

M1	one use of factor theorem
A1	oe
M1	at least one of p , q correct
A1	oe (see note below*) cao
m1	coeffs of x^2 multiply to give 2 constant terms multiply to their <i>q</i> or formula with correct <i>a,b,c</i>
A1	cao

B1

B1

-1 each extra root up to 2

Ignore roots outside $0^{\circ} < \theta < 180^{\circ}$

Q	Solution	Mark	Notes
13	Required term = $\binom{5}{3}(2)^{5-3}(-3)^3$	B1	$\binom{5}{3}$ oe
		B1	(2) ⁵⁻³ oe
		B1	$(-3)^3$ oe
	Required term = $10 \times 4 \times (-27)$		
	Required term $= -1080$	B1	ISW

14(a)	Attempt to differentiate	M1	
	$f'(x) = 9x^2 - 10x + 1$	A1	
	$9x^2 - 10x + 1 = 0$	m1	
	(9x-1)(x-1) = 0		
	$x = \frac{1}{9}, y = -\frac{1445}{243} = -5.9465$	A1	or $x = \frac{1}{9}, 1$
	x = 1, y = -7	A1	all correct
	f''(x) = 18x - 10	M1	oe ft quadratic $f'(x)$
	$x = \frac{1}{9}, (f(x) = -5.9465)$ is a maximum	A1	ft their x value
	x = 1, ($f(x) = -7$) is a minimum	A1	ft their <i>x</i> value provided different conclusion

<u>Note</u>: if f''(x) is incorrectly found from their f'(x), maximum marks M1A1A0

14(b)(i)Rewriting the equation

To give
$$f(x) = 3x^3 - 5x^2 + x - 6$$
 on one side. M1 oe
 $3x^3 - 5x^2 + x - 6 = -7$,
2 (distinct roots) A1

14(b)(ii) To give
$$f(x) = 3x^3 - 5x^2 + x - 6$$
 on one side M1 oe
 $3x^3 - 5x^2 + x - 6 = -6.5$
3 (distinct roots) A1

<u>Note</u>: 14b - 0 marks for unsupported answers

15
$$\frac{(x^2y)^3}{x^2y^2} \times \frac{9}{x^2y^2} = 36$$

 $4y = x^2$

$$\log_a\left(\frac{y}{x+3}\right) = \log_a 1$$

$$y = x + 3$$
$$4y = 4x + 12 = x2$$
$$x2 - 4x - 12 = 0$$

$$(x+2)(x-6)=0$$

$$x = -2, 6$$

y = 1, 9

$$x = -2$$
 and $y = 1$, $x = 6$ and $y = 9$

OR

$$3(2\log_a x + \log_a y) - 2(\log_a x + \log_a y)$$
(B1B1B1) one for each us
+
$$\log_a 9 - 2(\log_a x + \log_a y) = \log_a 36$$
(B1) correct equation
$$2\log_a x - \log_a y = \log_a 4$$

$$\log_a y - \log_a (x + 3) = 0$$

$$2\log_a x - \log_a (x + 3) = \log_a 4$$
(M1) solve simultaneously
$$x^2 - 4x - 12 = 0$$
(A1)
$$(x + 2)(x - 6) = 0$$

$$x = -2, 6$$
(A1)
$$y = 1, 9$$
(A1)

x = -2 and y = 1, x = 6 and y = 9

Mark Notes

- **B**1 one use of subtraction law
- **B**1 one use of addition law
- **B**1 one use of power law
- oe for a correct equation after **B**1 the removal of logs
- for use of the subtraction law if not (B1) previously awarded.
- **B**1 or x = y - 3
- or $4y = (y 3)^2$ M1 or $y^2 - 10y + 9 = 0$
 - or (y-1)(y-9) = 0
- cao or y = 1, 9A1 or 1 correct pair
- A1 cao or x = -2, 6all correct
- se of laws

© WJEC CBAC Ltd.

Q	Solution	Mark	Notes
16(a)	$ \mathbf{a} = \sqrt{2^2 + 1^2}$	M1	correct method
	$ \mathbf{a} = \sqrt{5}$		
	Required unit vector $=\frac{1}{\sqrt{5}}(2\mathbf{i} - \mathbf{j})$	A1	

M1

A1

B1

Accept 72° or 288°

Mark final answer

ft (c)(i)

cao

any correct method

or $k ((2\mu + 1)\mathbf{i} - (\mu + 3)\mathbf{j}) = (4\mathbf{i} - 5\mathbf{j})$

Both sides in terms of **i** and **j**

16(b)
$$\theta = \tan^{-1}(\pm 3)$$

 $\theta = (\pm)71.6^{\circ} (288.4^{\circ})$

16(c)(i)
$$\mu$$
a + **b** = μ (2**i** - **j**) + (**i** - 3**j**)
 μ **a** + **b** = (2 μ + 1)**i** - (μ + 3)**j**

16(c)(ii)If parallel to $4\mathbf{i} - 5\mathbf{j}$, $(2\mu + 1)\mathbf{i} - (\mu + 3)\mathbf{j} = k(4\mathbf{i} - 5\mathbf{j})$ M1 $2\mu + 1 = 4k$ and $\mu + 3 = 5k$ A1 Solving simultaneously m1 $(k = \frac{5}{6})$ $\mu = \frac{7}{6}$ A1 <u>Alternative solution</u> If parallel to $4\mathbf{i} - 5\mathbf{j}$,

$$\frac{2\mu+1}{\mu+3} = \frac{4}{5}$$
 (M1A1) ft (c)(i)

$$10\mu + 5 = 4\mu + 12$$
 (m1)

$$6\mu = 7$$

$$\mu = \frac{7}{6}$$
 (A1) cao

2300U10-1 WJEC GCE AS Mathematics – Unit 1 Pure Mathematics A MS S22/CB