wjec cbac

GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW) FURTHER MATHEMATICS UNIT 1 FURTHER PURE MATHEMATICS A 2305U10-1

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 1 FURTHER PURE MATHEMATICS A

SUMMER 2022 MARK SCHEME

1.	METHOD 1:		
a) i)	$zw = (3 - 4i)(2 - i) = 6 - 3i - 8i + 4i^2$		
	zw = 2 - 11i	B2	B1 for unsimplified expansion with 3 correct terms
	$ zw = \sqrt{2^2 + (-11)^2} = 5\sqrt{5}$	B1	FT their <i>zw</i> (<i>zw</i> must be seen)
	$\arg zw = \tan^{-1}\left(-\frac{11}{2}\right) = -1.39 \text{ or } -79.7^{\circ}$	B1	oe FT their <i>zw</i> if not in 1st quadrant
	METHOD 2:		
	$ z = \sqrt{3^2 + (-4)^2} = 5$	(B1)	Both mods
	$ w = \sqrt{2^2 + (-1)^2} = \sqrt{5}$	(01)	
	$\arg z = \tan^{-1}\left(-\frac{4}{3}\right) = -0.927 \text{ or } -53.13^{\circ}$		oe
	$\arg w = \tan^{-1}\left(-\frac{1}{2}\right) = -0.464 \text{ or } -26.57^{\circ}$	(B1)	Both args
	Therefore,		oe
	$ zw = 5 \times \sqrt{5} = 5\sqrt{5}$	(B1)	FT args and mods
	$\arg zw = -0.927 + -0.464 = -1.39 \text{ or } -79.7^{\circ}$	(вт)	(mods and args must be seen)
		[4]	
ii)	$\therefore 5\sqrt{5}(\cos(-1.39) + i\sin(-1.39))$	B1	oe FT their mod and arg
	OR $5\sqrt{5}(\cos(-79.7^{\circ}) + i\sin(-79.7^{\circ}))$		
		[1]	
b)	METHOD 1: 1 1 1		
	$\frac{1}{v} = \frac{1}{2-i} - \frac{1}{3-4i}$		
	1 3-4i-2+i		
	$\frac{1}{v} = \frac{1}{(3-4i)(2-i)}$	M1	Attempt to combine
	1 1 2;		
	$\frac{1}{v} = \frac{1-31}{2-11i}$	A1	
	$v = \frac{2 - 111}{1 - 2i}$	Δ1	
	1 - 31	//1	
	$v = \frac{2 - 11i}{2} \times \frac{1 + 3i}{2}$		
	1 - 3i + 3i	M1	FT their <i>v</i>
	35 - 5i(7 - i)		INU for no working
	$v = \frac{10}{10} \left(= \frac{1}{2} \right)$		
	v = 3.5 - 0.5i	A1	ое сао
	METHOD 2:		
	$\frac{1}{1} = \frac{1}{1} - \frac{1}{1}$		
	v = 2-i = 3-4i		

	$\frac{1}{w} = \frac{z - w}{w}$	(M1)	Attempt to combine
	$v = \frac{zw}{z-w}$ or $\frac{1}{v} = \frac{1-3i}{2-11i}$	(A1)	
	$v = \frac{2-11i}{1-3i}$	(A1)	
	$v = \frac{2 - 11i}{1 - 3i} \times \frac{1 + 3i}{1 + 3i}$	(M1)	FT their <i>v</i> M0 no working
	$v = \frac{35 - 5i}{10} \left(= \frac{7 - i}{2} \right)$ v = 3.5 - 0.5i	(A1)	ое сао
	METHOD 3: Attempt to realise at least one fraction e.g. $\frac{1}{2-i} \times \frac{2+i}{2+i} \text{ OR } \frac{1}{3-4i} \times \frac{3+4i}{3+4i}$	(M1)	M0 no working
	$\frac{1}{v} = \frac{2+i}{5} - \frac{3+4i}{25}$		
	$\frac{1}{v} = \frac{7+i}{25}$	(A1)	
	$v = \frac{25}{7+i}$	(A1)	
	$v = \frac{25}{7+i} \times \frac{7-i}{7-i}$	(M1)	FT their <i>v</i> M0 no working
	$v = \frac{35 - 5i}{10} \left(= \frac{7 - i}{2} \right)$		
	v = 3.5 - 0.5i	(A1) [5]	oe cao
c)	$\bar{v} = \frac{7+i}{2}$	B1	FT their <i>v</i> provided complex
	$v\bar{v} = \frac{7-i}{2} \times \frac{7+i}{2} = \frac{25}{2}$	B1 [2]	oe
		[12]	

2.a)	METHOD 1:		
	Let $X = \begin{pmatrix} a \\ b \end{pmatrix}$		
	$\begin{pmatrix} 3 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} a \\ 1 \end{pmatrix} = \begin{pmatrix} -11 \\ -1 \end{pmatrix}$		
	(-1 -2)(b) (7) Therefore		
	3a + 4b = -11	M1	Attempt to form 2 sim eans
	-a - 2b = 7	A1	······································
	Solving, a = 3 and $b = -5$	N 4 1	
	u = 3 and $b = -3$		Attempt to solve Must be in matrix form
	x = (-5)		
	det $A = (3 \times -2) - (4 \times -1) = -2$	(P1)	ci
	$A^{-1} - \frac{1}{2} \begin{pmatrix} -2 & -4 \end{pmatrix}$	(B1)	51
	$\frac{A}{-2} \begin{pmatrix} 1 & 3 \end{pmatrix}$. ,	
	1 (-2 -4) (-11)	(844)	
	$X = A^{-1}B = \frac{1}{-2}\begin{pmatrix} 2 & 1 \\ 1 & 3 \end{pmatrix}\begin{pmatrix} 1 & 1 \\ 7 \end{pmatrix}$	(1011)	
	$X = \begin{pmatrix} 3 \\ -5 \end{pmatrix}$	(A1)	Must be in matrix form
	U U U U U U U U U U U U U U U U U U U	[4]	
b)	If reflection in $y = -2x$,		
(i)	then $\tan \theta = -2$	B1	si
	$\therefore \theta = \tan^{-1}(-2)$		
	Reflection matrix: $\begin{pmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{5}{5} & -\frac{5}{5} \end{pmatrix}$	B2	B1 for 1 error (possibly
	$\left(-\frac{4}{5} \frac{3}{5}\right)$		repeated)
		[3]	If B2 then -1 for PA
b)	METHOD 1:		ET de la T
(11)	Inerefore, $\langle 3 \rangle = 4$		FI their /
	$F_{F} = \left(-\frac{1}{5} - \frac{1}{5} \right) (2 \ 3)$	M1	For attempt to multiply at
	$EF = \begin{pmatrix} 4 & 3 \end{pmatrix} \begin{pmatrix} 7 & 1 \end{pmatrix}$		least 1 point matrix
	\ 5 5 /		
	/ 34 13		
	$EF = \begin{pmatrix} -\overline{5} & -\overline{5} \\ \overline{5} & \overline{5} \end{pmatrix}$	A1	Left column
	$\frac{13}{5} - \frac{9}{5}$	A1	Right column
	1 5 57		May be seen as separate
	Midpoint:		matrices
	$\left(-\frac{47}{12},\frac{2}{2}\right)$	B1	oe, FT their <i>E</i> and <i>F</i>
	10.5/		
	METHOD 2:		FT their T
	Midpoint of $CD = \left(\frac{2+3}{2}, \frac{7+1}{2}\right) = \left(\frac{5}{2}, 4\right)$	(B1)	
		. ,	
	Therefore,		
1			

	$ \begin{pmatrix} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{pmatrix} \begin{pmatrix} \frac{5}{2} \\ 4 \end{pmatrix} $	(M1)	FT their midpoint
	$= \begin{pmatrix} -\frac{47}{10} \\ 2 \end{pmatrix}$	(A1)	
	$\sqrt{5}$	(A1)	00
	Midpoint of <i>EF</i> : $\left(-\frac{47}{10},\frac{2}{5}\right)$	[4]	
		[11]	
3.	$x = -1 + 4\lambda y = 2 - 2\lambda z = -6 + 7\lambda$	B1	si
	Substituting, $\therefore -3 + 12\lambda + 16 - 16\lambda + 54 - 63\lambda = 0$	M1 A1	
	$\begin{aligned} &\delta & \lambda = 0 \\ &\lambda &= 1 \end{aligned}$	A1	
	$ \therefore x = 3 y = 0 z = 1 \Rightarrow (3, 0, 1) $	B1	FT their λ and their x, y, z provided at least 2 correct
		[5]	•
4.	$1^{2} + 2^{2} + 3^{2} + \dots + N^{2}$ can be written as $\sum_{r=1}^{N} r^{2}$		
	$\sum_{n=1}^{N} r^2 = (3N - 2)^2$		
	$\frac{1}{6}N(N+1)(2N+1) = 9N^2 - 12N + 4$ $2N^3 + 3N^2 + N = 54N^2 - 72N + 24$ $2N^3 - 51N^2 + 72N - 24 = 0$	M1 A1	
	2N - 51N + 75N - 24 = 0	A1	сао
	Finding one factor, eg. $(N - 1)$ $\therefore (N - 1)(2N^2 - 49N + 24) = 0$	B1 m1	(N-k) form Linear × Quadratic (2 terms
	∴ $(N-1)(2N-1)(N-24) = 0$ ∴ $N = 1$ or $N = \frac{1}{2}$ or $N = 24$	A1	correct)
	Therefore, $N = 1, 24$	A1 [7]	Must reject $N = \frac{1}{2}$

5.	z - 3 + 2i = z - 3		
a)	x + iy - 3 + 2i = x + iy - 3	M1	
	(x-3) + i(y+2) = (x-3) + iy		
	$\sqrt{(x-3)^2 + (y+2)^2} = \sqrt{(x-3)^2 + y^2}$	m1	oe
	$x^{2} - 6x + 9 + y^{2} + 4y + 4 = x^{2} - 6x + 9 + y^{2}$		
	4y + 4 = 0	A1	Mark final answer
	y = -1		Sight of answer only M1m1A1
		[3]	
b)	It is the perpendicular bisector of the line joining the	B1	
	points (3, -2) and (3, 0)		
	OR		
	The locus of P is all the points which are equidistant	(B1)	
	from (3, -2) and (3,0) .		
		[1]	
		[4]	
6.	$\alpha + \beta + \gamma = -\frac{p}{2}$	B1	May be seen later in working
	$\alpha\beta + \beta\gamma + \gamma\alpha = -63$	B1	
	$\alpha\beta\gamma = -\frac{q}{2}$	B1	
	2		
	Let initial root be α AND use of a n-property	N 4 1	
	Let millar out be a AND use of g.p. property	IVII	Accept solutions where α, β, γ
	Then other roots are -3α and 9α		Interchanged
		AI	oe (e.g. -3α , 9α , -27α)
	Therefore		
	$\binom{n}{n}$		
	$\left(7\alpha = -\frac{\nu}{2}\right)$		
	$-21\alpha^2 = -63$	A1	provided M1 awarded
	$\left(-27\alpha^3 = -\frac{q}{2}\right)$		
	2 0 1/2		
	$\therefore \ \alpha^2 = 3 \Rightarrow \alpha = \pm \sqrt{3}$	A1	сао
	If $\alpha = +\sqrt{3}$, $p = -14\sqrt{3}$ and $q = 162\sqrt{3}$		
	AND		
	If $\alpha = -\sqrt{3}$, $p = 14\sqrt{3}$ and $q = -162\sqrt{3}$	A1	
		[8]	

7.	From lines L_1 , L_2 :		
a)	$(2 \times 3) + (1 \times n) + (1 \times -3) = 0$	M1	
	6+n-3=0		
	n = -3	A1	convincing
	From lines L_1 , L_3 :		
	$(2 \times p) + (-3 \times 3) + (1 \times 4) = 0$	(M1)	If not awarded for L_1 , L_2
	$p = \frac{5}{2}$	A1	
	2	[3]	
b)	(2, 5) + $(1, 2)$ + $(2, 4)$ 3		
-	$(3 \times \frac{1}{2}) + (1 \times 3) + (-3 \times 4) = -\frac{1}{2}$	B1	si FT their p for B1B1M1
	$ 3\mathbf{i} + \mathbf{j} - 3\mathbf{k} = \sqrt{19}$		
	15 1 125	D 1	
	$\left \frac{3}{2}\mathbf{i} + 3\mathbf{j} + 4\mathbf{k}\right = \left \frac{1-3}{4}\right $	BI	si Both mods
	Therefore		
	3		
	$-\frac{1}{2}$	M1	0e
	$\cos \theta = \frac{125}{125}$		
	$\sqrt{19}\sqrt{\frac{-2}{4}}$		
	$\theta = 93.5^{\circ}$		
	Therefore, acute angle is $\theta = 86.5^{o}$	A1	сао
		[4]	
		[7]	

8.	Rotation matrix: $\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix}$	B1	
	$ \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0\\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x\\ y\\ z \end{pmatrix} $	M1	Attempt to multiply Allow 1 error (possibly repeated)
	$= \begin{pmatrix} \frac{1}{2}x - \frac{\sqrt{3}}{2}y\\ \frac{\sqrt{3}}{2}x + \frac{1}{2}y\\ z \end{pmatrix}$	A1	
	Therefore, $x' = \frac{1}{2}x - \frac{\sqrt{3}}{2}y$ $y' = \frac{\sqrt{3}}{2}x + \frac{1}{2}y$		
	$ \therefore \frac{1}{2}x - \frac{\sqrt{3}}{2}y = \frac{\sqrt{3}}{2}x + \frac{1}{2}y x - \sqrt{3}y = \sqrt{3}x + y x - \sqrt{3}x = y + \sqrt{3}y x(1 - \sqrt{3}) = y(1 + \sqrt{3}) x(1 - \sqrt{3}) = y(1 + \sqrt{3}) $	M1	FT their images matrix
	$y = \frac{\pi(-\sqrt{3})}{1+\sqrt{3}}$	A1	сао
	$\frac{1-\sqrt{3}}{1+\sqrt{3}} = \frac{(1-\sqrt{3})(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})}$ $= \frac{1+3-\sqrt{3}-\sqrt{3}}{1-3+\sqrt{3}-\sqrt{3}} = \frac{4-2\sqrt{3}}{-2}$	M1	M0 no working FT their y of equivalent difficulty e.g. $y = \frac{x(a+\sqrt{b})}{c+\sqrt{d}}$
	$y = \left(-2 + \sqrt{3}\right)x$	A1 [7]	

9. a)	$\frac{1}{r+1} - \frac{2}{r+2} + \frac{1}{r+3}$		
	$\frac{(r+2)(r+3) - 2(r+1)(r+3) + (r+1)(r+2)}{(r+1)(r+2)(r+3)}$	M1	
	$\frac{r^2 + 5r + 6 - 2r^2 - 8r - 6 + r^2 + 3r + 2}{(r+1)(r+2)(r+3)}$		
	$=\frac{2}{(r+1)(r+2)(r+3)}$.	A1 [2]	Convincing
b)	$ \begin{pmatrix} \frac{1}{2} - \frac{2}{3} + \frac{1}{4} \end{pmatrix} + \begin{pmatrix} \frac{1}{3} - \frac{2}{4} + \frac{1}{5} \end{pmatrix} + \begin{pmatrix} \frac{1}{4} - \frac{2}{5} + \frac{1}{6} \end{pmatrix} + \cdots \\ + \begin{pmatrix} \frac{1}{n} - \frac{2}{n+1} + \frac{1}{n+2} \end{pmatrix} + \begin{pmatrix} \frac{1}{n+1} - \frac{2}{n+2} + \frac{1}{n+3} \end{pmatrix} $	M1 A1	Substituting values – At least three correct sets of brackets Must have at least one correct algebraic set of brackets
	$=\frac{1}{2} - \frac{2}{3} + \frac{1}{3} + \frac{1}{n+2} - \frac{2}{n+2} + \frac{1}{n+3}$	A1 A1	
	$=\frac{1}{6} - \frac{n+3-n-2}{(n+2)(n+3)}$		
	$=\frac{1}{6} - \frac{1}{(n+2)(n+3)}$	A1 [5]	Convincing
с)	$\sum_{\substack{r=1\\\text{AND}}}^{5} A_r = \frac{1}{6} - \frac{1}{7 \times 8} = \frac{25}{168}$	B1	Both
	$\sum_{r=1}^{10} A_r = \frac{1}{6} - \frac{1}{12 \times 13} = \frac{25}{156}$		
	$\frac{25}{168} \cdot \frac{25}{156}$		
	13:14	B1 [2]	
		[9]	

2305U10-1 WJEC GCE AS Further Mathematics - Unit 1 Further Pure Mathematics A MS S22/CB