GCE AS MARKING SCHEME

SUMMER 2022

AS (NEW)

FURTHER MATHEMATICS UNIT 1 FURTHER PURE MATHEMATICS A 2305U10-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 1 FURTHER PURE MATHEMATICS A

SUMMER 2022 MARK SCHEME

1. a) i)	METHOD 1: $\begin{aligned} & z w=(3-4 \mathrm{i})(2-\mathrm{i})=6-3 \mathrm{i}-8 \mathrm{i}+4 \mathrm{i}^{2} \\ & z w=2-11 \mathrm{i} \\ & \|z w\|=\sqrt{2^{2}+(-11)^{2}}=5 \sqrt{5} \\ & \arg z w=\tan ^{-1}\left(-\frac{11}{2}\right)=-1.39 \text { or }-79.7^{\circ} \end{aligned}$ METHOD 2: $\begin{aligned} & \|z\|=\sqrt{3^{2}+(-4)^{2}}=5 \\ & \|w\|=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5} \\ & \arg z=\tan ^{-1}\left(-\frac{4}{3}\right)=-0.927 \text { or }-53.13^{\circ} \\ & \arg w=\tan ^{-1}\left(-\frac{1}{2}\right)=-0.464 \text { or }-26.57^{\circ} \end{aligned}$ Therefore, $\begin{aligned} & \|z w\|=5 \times \sqrt{5}=5 \sqrt{5} \\ & \arg z w=-0.927+-0.464=-1.39 \text { or }-79.7^{\circ} \end{aligned}$	B2 B1 B1 (B1) (B1) (B1) (B1) [4]	B1 for unsimplified expansion with 3 correct terms FT their $z w$ ($z w$ must be seen) oe FT their $z w$ if not in 1st quadrant Both mods oe Both args oe FT args and mods oe FT args and mods (mods and args must be seen)
ii)	$\begin{aligned} & \therefore 5 \sqrt{5}(\cos (-1.39)+\mathrm{i} \sin (-1.39)) \\ & \text { OR } 5 \sqrt{5}\left(\cos \left(-79.7^{\circ}\right)+\mathrm{i} \sin \left(-79.7^{\circ}\right)\right) \end{aligned}$		oe FT their mod and arg
b)	METHOD 1: $\begin{aligned} & \frac{1}{v}=\frac{1}{2-\mathrm{i}}-\frac{1}{3-4 \mathrm{i}} \\ & \frac{1}{v}=\frac{3-4 \mathrm{i}-2+\mathrm{i}}{(3-4 \mathrm{i})(2-\mathrm{i})} \end{aligned}$ $\frac{1}{v}=\frac{1-3 \mathrm{i}}{2-11 \mathrm{i}}$ $v=\frac{2-11 \mathrm{i}}{1-3 \mathrm{i}}$ $v=\frac{2-11 \mathrm{i}}{1-3 \mathrm{i}} \times \frac{1+3 \mathrm{i}}{1+3 \mathrm{i}}$ $v=\frac{35-5 \mathrm{i}}{10}\left(=\frac{7-\mathrm{i}}{2}\right)$ $v=3.5-0.5 \mathrm{i}$ METHOD 2: $\frac{1}{v}=\frac{1}{2-\mathrm{i}}-\frac{1}{3-4 \mathrm{i}}$	M1 A1 A1 M1 M	Attempt to combine FT their v MO for no working oe cao

	$\underline{1}=\frac{z-w}{z}$	(M1)	Attempt to combine
	$v=\frac{z w}{z-w} \text { or } \frac{1}{v}=\frac{1-3 \mathrm{i}}{2-11 \mathrm{i}}$	(A1)	
	$v=\frac{2-11 i}{1-3 i}$	(A1)	
	$v=\frac{2-11 \mathrm{i}}{1-3 \mathrm{i}} \times \frac{1+3 \mathrm{i}}{1+3 \mathrm{i}}$	(M1)	FT their v MO no working
	$\begin{aligned} & v=\frac{35-5 \mathrm{i}}{10}\left(=\frac{7-\mathrm{i}}{2}\right) \\ & v=3.5-0.5 \mathrm{i} \end{aligned}$	(A1)	oe cao
	METHOD 3: Attempt to realise at least one fraction e.g. $\frac{1}{2-\mathrm{i}} \times \frac{2+\mathrm{i}}{2+\mathrm{i}}$ OR $\frac{1}{3-4 \mathrm{i}} \times \frac{3+4 \mathrm{i}}{3+4 \mathrm{i}}$ $\frac{1}{v}=\frac{2+\mathrm{i}}{5}-\frac{3+4 \mathrm{i}}{25}$	(M1)	M0 no working
	$\frac{1}{v}=\frac{7+\mathrm{i}}{25}$	(A1)	
	$v=\frac{25}{7+i}$	(A1)	
	$v=\frac{25}{7+i} \times \frac{7-i}{7-i}$	(M1)	FT their v MO no working
	$\begin{aligned} & v=\frac{35-5 \mathrm{i}}{10}\left(=\frac{7-\mathrm{i}}{2}\right) \\ & v=3.5-0.5 \mathrm{i} \end{aligned}$	(A1) [5]	oe cao
c)	$\bar{v}=\frac{7+\mathrm{i}}{2}$	B1	FT their v provided complex
	$v \bar{v}=\frac{7-\mathrm{i}}{2} \times \frac{7+\mathrm{i}}{2}=\frac{25}{2}$	$\begin{aligned} & \mathrm{B} 1 \\ & {[2]} \\ & \hline \end{aligned}$	oe
		[12]	

2.a)	METHOD 1: Let $X=\binom{a}{b}$ $\left(\begin{array}{cc} 3 & 4 \\ -1 & -2 \end{array}\right)\binom{a}{b}=\binom{-11}{7}$ Therefore, $\begin{aligned} & 3 a+4 b=-11 \\ & -a-2 b=7 \end{aligned}$ Solving, $\begin{aligned} & a=3 \text { and } b=-5 \\ & X=\binom{3}{-5} \end{aligned}$ METHOD 2: $\begin{aligned} & \operatorname{det} A=(3 \times-2)-(4 \times-1)=-2 \\ & A^{-1}=\frac{1}{-2}\left(\begin{array}{cc} -2 & -4 \\ 1 & 3 \end{array}\right) \end{aligned}$ Therefore, $\begin{aligned} & X=A^{-1} B=\frac{1}{-2}\left(\begin{array}{cc} -2 & -4 \\ 1 & 3 \end{array}\right)\binom{-11}{7} \\ & X=\binom{3}{-5} \end{aligned}$	M1 A1 M1 A1 (B1) (B1) (M1) (A1) [4]	Attempt to form 2 sim eqns Attempt to solve Must be in matrix form si Must be in matrix form
$\begin{aligned} & \hline \text { b) } \\ & \text { (i) } \end{aligned}$	If reflection in $y=-2 x$, then $\tan \theta=-2$ $\therefore \theta=\tan ^{-1}(-2)$ Reflection matrix: $\left(\begin{array}{cc}-\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5}\end{array}\right)$	B1 B2 [3]	si B1 for 1 error (possibly repeated) If B 2 then -1 for PA
b) (ii)	METHOD 1: Therefore, $\begin{aligned} & E F=\left(\begin{array}{rr} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{array}\right)\left(\begin{array}{ll} 2 & 3 \\ 7 & 1 \end{array}\right) \\ & E F=\left(\begin{array}{rr} -\frac{34}{5} & -\frac{13}{5} \\ \frac{13}{5} & -\frac{9}{5} \end{array}\right) \end{aligned}$ Midpoint: $\left(-\frac{47}{10}, \frac{2}{5}\right)$ METHOD 2: Midpoint of $C D=\left(\frac{2+3}{2}, \frac{7+1}{2}\right)=\left(\frac{5}{2}, 4\right)$ Therefore,	M1 A1 A1 B1 (B1)	FT their T For attempt to multiply at least 1 point matrix Left column Right column May be seen as separate matrices oe, FT their E and F FT their T

	$\begin{aligned} & \left(\begin{array}{cc} -\frac{3}{5} & -\frac{4}{5} \\ -\frac{4}{5} & \frac{3}{5} \end{array}\right)\binom{\frac{5}{2}}{4} \\ & =\binom{-\frac{47}{10}}{\frac{2}{5}} \end{aligned}$ Midpoint of $E F$: $\left(-\frac{47}{10}, \frac{2}{5}\right)$	(M1) (A1) (A1) [4]	FT their midpoint oe
		[11]	
3.	$x=-1+4 \lambda \quad y=2-2 \lambda \quad z=-6+7 \lambda$ Substituting, $\begin{aligned} & \therefore-3+12 \lambda+16-16 \lambda+54-63 \lambda=0 \\ & 67-67 \lambda=0 \\ & \lambda=1 \\ & \therefore x=3 \quad y=0 \quad z=1 \\ & \Rightarrow(3,0,1) \end{aligned}$	B1 M1 A1 A1 B1 [5]	si FT their λ and their x, y, z provided at least 2 correct
4.	$\begin{aligned} & 1^{2}+2^{2}+3^{2}+\cdots+N^{2} \text { can be written as } \sum_{r=1}^{N} r^{2} \\ & \sum_{r=1}^{N} r^{2}=(3 N-2)^{2} \\ & \frac{1}{6} N(N+1)(2 N+1)=9 N^{2}-12 N+4 \\ & 2 N^{3}+3 N^{2}+N=54 N^{2}-72 N+24 \\ & 2 N^{3}-51 N^{2}+73 N-24=0 \end{aligned}$ Finding one factor, eg. $(N-1)$ $\begin{aligned} & \therefore(N-1)\left(2 N^{2}-49 N+24\right)=0 \\ & \therefore(N-1)(2 N-1)(N-24)=0 \\ & \therefore \quad N=1 \text { or } N=\frac{1}{2} \text { or } N=24 \end{aligned}$ Therefore, $N=1,24$	M1 A1 A1 B1 m1 A1 A1 [7]	cao ($N-k$) form Linear \times Quadratic (2 terms correct) Must reject $N=\frac{1}{2}$

5. a)	$\begin{aligned} & \|z-3+2 \mathrm{i}\|=\|z-3\| \\ & \|x+\mathrm{i} y-3+2 \mathrm{i}\|=\|x+\mathrm{i} y-3\| \\ & \|(x-3)+\mathrm{i}(y+2)\|=\|(x-3)+\mathrm{i} y\| \\ & \sqrt{(x-3)^{2}+(y+2)^{2}}=\sqrt{(x-3)^{2}+y^{2}} \\ & x^{2}-6 x+9+y^{2}+4 y+4=x^{2}-6 x+9+y^{2} \\ & 4 y+4=0 \\ & y=-1 \end{aligned}$	M1 m1 A1 [3]	oe Mark final answer Sight of answer only M1m1A1
b)	It is the perpendicular bisector of the line joining the points ($3,-2$) and (3,0) OR The locus of P is all the points which are equidistant from ($3,-2$) and (3,0).	B1 (B1) [1]	
		[4]	
6.	$\begin{aligned} & \alpha+\beta+\gamma=-\frac{p}{2} \\ & \alpha \beta+\beta \gamma+\gamma \alpha \stackrel{ }{=}-63 \\ & \alpha \beta \gamma=-\frac{q}{2} \end{aligned}$ Let initial root be α AND use of g.p. property Then other roots are -3α and 9α Therefore $\begin{aligned} & \left(7 \alpha=-\frac{p}{2}\right) \\ & -21 \alpha^{2}=-63 \\ & \left(-27 \alpha^{3}=-\frac{q}{2}\right) \end{aligned}$ $\therefore \alpha^{2}=3 \Rightarrow \alpha= \pm \sqrt{3}$ If $\alpha=+\sqrt{3}, p=-14 \sqrt{3}$ and $q=162 \sqrt{3}$ AND If $\alpha=-\sqrt{3}, p=14 \sqrt{3}$ and $q=-162 \sqrt{3}$	B1 B1 B1 M1 A1 A1 A1 A1 [8]	May be seen later in working Accept solutions where α, β, γ interchanged oe (e.g. $-3 \alpha, 9 \alpha,-27 \alpha$) provided M1 awarded cao

7. a)	From lines L_{1}, L_{2} : $\begin{aligned} & (2 \times 3)+(1 \times n)+(1 \times-3)=0 \\ & 6+n-3=0 \\ & n=-3 \end{aligned}$ From lines L_{1}, L_{3} : $\begin{gathered} (2 \times p)+(-3 \times 3)+(1 \times 4)=0 \\ p=\frac{5}{2} \end{gathered}$	M1 A1 (M1) A1 [3]	convincing If not awarded for L_{1}, L_{2}
b)	$\begin{aligned} & \left(3 \times \frac{5}{2}\right)+(1 \times 3)+(-3 \times 4)=-\frac{3}{2} \\ & \|3 \mathbf{i}+\mathbf{j}-3 \mathbf{k}\|=\sqrt{19} \\ & \left\|\frac{5}{2} \mathbf{i}+3 \mathbf{j}+4 \mathbf{k}\right\|=\sqrt{\frac{125}{4}} \end{aligned}$ Therefore, $\begin{aligned} & \cos \theta=\frac{-\frac{3}{2}}{\sqrt{19} \sqrt{\frac{125}{4}}} \\ & \theta=93.5^{\circ} \end{aligned}$ Therefore, acute angle is $\theta=86.5^{\circ}$	B1 B1 M1 A1 [4]	si FT their p for B1B1M1 si Both mods oe cao
		[7]	

8.	Rotation matrix: $\left(\begin{array}{ccc}\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$ $\begin{aligned} \left(\begin{array}{ccc} \frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{array}\right) & \left(\begin{array}{l} x \\ y \\ z \end{array}\right) \\ & =\left(\begin{array}{cc} \frac{1}{2} x-\frac{\sqrt{3}}{2} y \\ \frac{\sqrt{3}}{2} x+\frac{1}{2} y \\ z \end{array}\right) \end{aligned}$ Therefore, $\begin{aligned} & x^{\prime}=\frac{1}{2} x-\frac{\sqrt{3}}{2} y \\ & y^{\prime}=\frac{\sqrt{3}}{2} x+\frac{1}{2} y \\ & \therefore \frac{1}{2} x-\frac{\sqrt{3}}{2} y=\frac{\sqrt{3}}{2} x+\frac{1}{2} y \\ & x-\sqrt{3} y=\sqrt{3} x+y \\ & x-\sqrt{3} x=y+\sqrt{3} y \\ & x(1-\sqrt{3})=y(1+\sqrt{3}) \\ & y=\frac{x(1-\sqrt{3})}{1+\sqrt{3}} \\ & \frac{1-\sqrt{3}}{1+\sqrt{3}}=\frac{(1-\sqrt{3})(1-\sqrt{3})}{(1+\sqrt{3})(1-\sqrt{3})} \\ & =\frac{1+3-\sqrt{3}-\sqrt{3}}{1-3+\sqrt{3}-\sqrt{3}}=\frac{4-2 \sqrt{3}}{-2} \\ & y=(-2+\sqrt{3}) x \end{aligned}$	B1 M1 A1 M1 A1 M1 A1 [7]	Attempt to multiply Allow 1 error (possibly repeated) FT their images matrix cao MO no working FT their y of equivalent difficulty e.g. $y=\frac{x(a+\sqrt{b})}{c+\sqrt{d}}$

\begin{tabular}{|c|c|c|c|}
\hline 9. a) \& \[
\begin{aligned}
\& \frac{1}{r+1}-\frac{2}{r+2}+\frac{1}{r+3} \\
\& \frac{(r+2)(r+3)-2(r+1)(r+3)+(r+1)(r+2)}{(r+1)(r+2)(r+3)} \\
\& \frac{r^{2}+5 r+6-2 r^{2}-8 r-6+r^{2}+3 r+2}{(r+1)(r+2)(r+3)} \\
\& =\frac{2}{(r+1)(r+2)(r+3)} .
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
[2]
\end{tabular} \& Convincing \\
\hline b) \& \[
\begin{aligned}
\& \quad \begin{array}{l}
\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{2}{4}+\frac{1}{5}\right)+\left(\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right)+\cdots \\
+\left(\frac{1}{n}-\frac{2}{n+1}+\frac{1}{n+2}\right)+\left(\frac{1}{n+1}-\frac{2}{n+2}+\frac{1}{n+3}\right)
\end{array} \\
\& =\frac{1}{2}-\frac{2}{3}+\frac{1}{3} \\
\& +\frac{1}{n+2}-\frac{2}{n+2}+\frac{1}{n+3}
\end{aligned} \quad \begin{gathered}
=\frac{1}{6}-\frac{n+3-n-2}{(n+2)(n+3)} \\
=\frac{1}{6}-\frac{1}{(n+2)(n+3)}
\end{gathered}
\] \& M1
A1
A1
A1

A1

[5] \& | Substituting values - At least three correct sets of brackets Must have at least one correct algebraic set of brackets |
| :--- |
| Convincing |

\hline c) \& \[
$$
\begin{aligned}
& \sum_{r=1}^{5} A_{r}=\frac{1}{6}-\frac{1}{7 \times 8}=\frac{25}{168} \\
& \text { AND } \\
& \sum_{r=1}^{10} A_{r}=\frac{1}{6}-\frac{1}{12 \times 13}=\frac{25}{156} \\
& \frac{25}{168}: \frac{25}{156} \\
& 13: 14
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| [2] | \& Both

\hline \& \& [9] \&

\hline
\end{tabular}

