GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS - NUMERACY
UNIT 1 - HIGHER TIER
3310U50-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCSE MATHEMATICS - NUMERACY

SUMMER 2022 MARKING SCHEME

Unit 1: Higher Tier	Mark	Comments
1(a) $420 \div 20 \times 17 \times 35$ (people)	M2 A1	M1 for any of the following: - $420 \div 20(=21)$ - sight of 21 CAO. Allow embedded as $420: 357$ Award A0 for 357 : 420
$\begin{array}{ll} \begin{array}{ll} \text { 1(a) Alternative method 1 } \\ (420 \div 20) \times(20+17)-420 \end{array} & (=777-420) \\ & 357 \text { (people) } \end{array}$	M2 A1	M1 for any of the following: - $420 \div 20$ (= 21) - sight of 21 - sight of 777 CAO. Allow embedded as 420 : 357 Award AO for 357 : 420
1(a) Alternative method 2 $420-(20-17) \times(420 \div 20) \quad(=420-63)$ $357 \text { (people) }$	M2 A1	M1 for any of the following: - $420 \div 20$ (= 21) - sight of 21 - sight of 63 CAO. Allow embedded as 420 : 357 Award AO for 357 : 420
1(a) Alternative method 3 Full ratio method to find 357 people, e.g. $\left(20 \times \frac{420}{(20)}: 17 \times \frac{420}{20}\right.$ 357 (people)	M2 A1	Allow seen in stages, including written as an appropriate sum of equivalent ratios, e.g. attempting $17+340$ (from $20: 17$ and $400: 340$) M1 for any of the following: - $420 \div 20(=21)$ - sight of 21 CAO. Allow embedded as $420: 357$ Award AO for 357 : 420
1(b) (Price last year =) (£)4.2(0) (Price now $=$) $4.2(0)+0.05 \times 4.2(0)$ $=(£) 4.41$	B1 M1 A1	FT 'their 4.20' A final answer of (£)4.4(0) (from $4+2 \times 0.2$) implies B1 M0 A0 If no marks awarded SC2 for sight of 4×1.1025 SC1 for sight of 4×1.05^{2}

2(a) Lowest common multiple of $2 \times 3 \times 5 \times 5$ or $150 \quad$ M2 seen or implied, e.g.
listing multiples to 150 for nuts and washers and sight of 30 boxes of bolts,
sight of $5 \times 30=150,6 \times 25=150$ and sight of 30 boxes of bolts,

Table completed correctly, or sight of correct number of boxes in working, e.g.

Nuts	5 boxes
Bolts	30 boxes
Washers	6 boxes

\square

2(b) $13.5(0 \mathrm{~mm})$
3(a) Suitable uniform scales on both axes, costs to $£ 110$ and number of bottles from 0 to 100
Correct representation of costs for 0 to 100 bottles

3(b) $1750 \div 1.75$ or $1750 \times 4 / 7$ or $1750 \div 7 / 4$

M1 for a method looking at factors or multiples, e.g.

- sight of $2 \times 3 \times 5$ and 5×5
- sight of 6×5 and 5×5
- 30 with factors 5,6 and 25 with factors 5,5
- listing 30,60, 90 and $25,50,75$
- a common multiple of 150 (not the lowest) seen or implied, e.g. 300, 450, 600, ...

A1 Answers in the table take precedence, e.g. if correct number of boxes 5 for nuts, 30 for bolts and 6 for washers in working but table incorrect, award M2 A0

If no marks, award SC1 for an answer with whole numbers of nuts, bolts and washers in the ratio $5: 30: 6$, e.g. answers of 10,60 and 12 respectively

B2 B1 for sight of any one of:

- $6 \times(2+0.25)$
- $6 \times 2+6 \times 0.25$
- sight of $2.25(\mathrm{~mm})$
- correct evaluation of ' $6 \times(2+$ their 0.25$)$ ' provided $0<$ 'their 0.25 ' ≤ 0.5

B1 Allow for cost axis

- starting from $£ 10$
- final label is $£ 100$ (rather than $£ 110$ or $£ 120$)
- suitable for 'their plotted points' with increasing costs for increasing number of bottles

With no incorrect points plotted Joined with dotted or solid straight line Ignore any additional 'correct' points plotted for more than 100 bottles
Examples of points:

Bottles	0	20	40	60	80	100
Costs £	10	30	50	70	90	110

B1 for any one of:

- One incorrect plot, that is not $(0,10)$, on an otherwise correct graph. $(0,10)$ must be plotted and joined
- correct graph for an inclusive range of 50 bottles
- at least 2 correct points plotted, with no incorrect points plotted, ignore vertical lines or 'line of best fit'. Allow for points not joined

Note: the drawing of a bar chart should only be awarded B1 maximum for the uniform scales

Allow sight of 1000 provided not from incorrect working (not for 1 litre $=1000 \mathrm{ml}$)

If no marks, award SC1 for sight of ' $\div 1.75$ ' or ' $\div 7 / 4$ ’ or ' $\times 4 / 7$ ' or equivalent

\begin{tabular}{|c|c|c|}
\hline 6. \(5.1 \times 10^{8}\) \& B2 \& \begin{tabular}{l}
Allow 5.10(00....) \(\times 10^{8}\) \\
B1 for the correct value written in index form, e.g.
\[
51 \times 10^{7} \text { or } 510 \times 10^{6}
\] \\
or \\
B1 for the sight of either of the following \\
- 51000000 and \(5.1 \times 10^{7}\) \\
- 5100000000 and \(5.1 \times 10^{9}\) \\
- \(5 \times 10^{8}\)
\end{tabular} \\
\hline \[
\begin{aligned}
\& \text { 7. (Capacity of original enclosure }=\text {) } \\
\& 5 \times 8 \times 3+\frac{1}{3} \times 5 \times 8 \times 1.5 \\
\& (120) \\
\& (20) \\
\& \text { (Volume of wooden cuboid }=4 \times 3.5 \times 0.5=) 7\left(\mathrm{~m}^{3}\right) \\
\& \text { (Percentage }=) \frac{140-7}{140}(\times 100) \quad \text { OR } \\
\& 100-\frac{7}{140} \times 100 \\
\& (\%)
\end{aligned}
\] \& M2
A1
B1
M1

A1 \& | M1 for $5 \times 8 \times 3+n \times 5 \times 8 \times 1.5$ |
| :--- |
| where $0<\mathrm{n} \leq 1$ |
| CAO |
| May be implied by 'their original capacity' - 7 |
| FT 'their derived 140 ' and 'their $4 \times 3.5 \times 0.5$ ' |
| On FT, their answer needs to be correctly calculated with any slips only being allowed in the decimal part of the percentage, provided it would round to the appropriate whole number. If their division not seen, their rounded answer needs to be correct for their division. |

\hline 8(a)

$$
\begin{aligned}
40 \times 0.3+10 \times 1 & \text { OR } \\
80-(10 \times 1.8+15 \times 1.6 & +20 \times 0.8) \\
& =22 \text { (trees })
\end{aligned}
$$ \& M1

A1 \& | $12+10 \quad \text { OR } \quad 80-(18+24+16)$ |
| :--- |
| If no marks awarded, SC1 for sight of 58 (trees greater than 50 cm) from $10 \times 1.8+15 \times 1.6+20 \times 0.8$ |

\hline 8(b)(i) 60 cm \& B1 \&

\hline | 8(b)(ii) |
| :--- |
| Search for the lower quartile |
| (Working fwds from 40) |
| (Working bwds from 50) $\begin{array}{ccc} 1 \mathrm{x}=20-40 \times 0.3 & \text { OR } & 1 \mathrm{x}=10- \\ \mathrm{x}=8 & \text { OR } & \mathrm{x}=2 \end{array}$ $1 x=10-10 \times 0.8$ | \& M1

A1 \& | $\text { OR } \frac{8}{10} \times 10 \quad \text { OR } \quad \frac{2}{10} \times 10$ |
| :--- |
| Needs to be unambiguous work leading towards their lower quartile |
| Lower quartile of 48 implies M1A1 |

\hline | Search for the upper quartile |
| :--- |
| (Working fwds from 60) |
| (Working bwds from 75) |
| $1.6 \mathrm{y}=20$ |
| OR |
| $1.6 y=20-20 \times 0.8$ $y=12.5 \quad \text { OR } \quad y=2.5$ | \& M1

A1 \& | $\begin{aligned} & \text { OR } \frac{20}{15 \times 1.6} \times 15 \quad\left(=\frac{20}{24} \times 15\right) \\ & \text { OR } \quad \frac{20-20 \times 0.8}{15 \times 1.6} \times 15 \quad\left(=\frac{4}{24} \times 15\right) \end{aligned}$ |
| :--- |
| Needs to be unambiguous work leading towards their upper quartile |
| Allow improper fractions Upper quartile of 72.5 implies M1A1 |

\hline | (Inter-quartile range $=$) |
| :--- |
| $(60+12.5)-(40+8)$ or equivalent $O R$ |
| (75-2.5) - $50-2$) or equivalent $=24.5(\mathrm{~cm})$ | \& M1

A1 \& | $72.5-48$ |
| :--- |
| FT 'their 12.5 ' or 'their 2.5 ' AND |
| FT 'their 8' or 'their 2' in an appropriate calculation provided one of the quartiles is correct and the other quartile is in the correct group (40-50 or 60-75) |
| CAO |

\hline
\end{tabular}

9(a) $\quad \frac{4}{3} \times \pi \times$ radius $^{3}=128 \pi \quad$ or equivalent $\begin{aligned} \text { (radius }^{3}= & \frac{128 \pi \times 3}{4 \times \pi} \quad \text { or equivalent } \\ \text { radius } \left.^{3}=96 \quad \text { OR } \quad \text { (radius }=\right) & \sqrt[3]{96} \\ (\text { radius }=) & 2 \sqrt[3]{12}(\mathrm{~mm}) \end{aligned}$	M1 m1 A1 B1	If an equation is not seen, only award if appropriate calculations with 128,4 and 3 seen Note: simplifying the cube root of 128 alone does not imply M1 Must be from correct working FT 'their derived 96 ' provided their answer can be written the form $a \sqrt[3]{12}$ An unsupported $2 \sqrt[3]{12}(\mathrm{~mm})$ is awarded MOmOAOBO
9(b) (Total surface area =) $\pi \times 8 \times 12+2 \times \frac{4 \times \pi \times 4^{2}}{2} \quad$ or equivalent $=160 \pi\left(\mathrm{~mm}^{2}\right)$	M2	M1 for sight of - $\pi \times 8 \times 12 \quad(96 \pi)$ or - $2 \times \frac{4 \times \pi \times 4^{2}}{2} \quad(64 \pi)$ CAO
10(a) Appropriate tangent drawn at a time between $t=5.7$ and $t=5.9$ seconds Difference in $\mathrm{y} \div$ difference in x Correctly evaluated gradient from a tangent drawn at a time between $t=5.7$ and $t=5.9$ seconds, given in its simplest form	M2	Note: A tangent that follows the curve between $t=6$ and $t=7$ is not appropriate i.e. it should not pass through $(7,10)$ or below M1 for a tangent drawn at any other time FT from M1 previously awarded Award m1A0 if only 1 correct difference in the division FT for a tangent drawn at any time from $t=5.6$ onwards Mark final answer Accept a correct improper fraction (unless it gives a whole number), mixed number or decimal If a decimal answer is given, it needs to be correctly evaluated to at least 1 decimal place, rounded or truncated If no marks awarded, SC1 for a final answer of $3 / 2$ or $1 \frac{1}{2}$ or 1.5 from convincing work that they are calculating the average acceleration (12/8) over the 8 seconds

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
10(b) \\
e.g. \(x=0.72727 \ldots\) and \(100 x=72.72727 \ldots\) or equivalent AND an attempt to subtract \((x=) \frac{72}{99}\) or \(\frac{7272}{9999}\) or \(\frac{8}{11}\) or equivalent
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& ISW \\
\hline 10(c) \(\frac{1}{2} \times 2 \times(0+12+2(1.5+3+6)) \quad\) or equivalent \(=33(\mathrm{~m})\) \& M2

A1 \& | Allow use of $5.7 \leq$ speed ≤ 6.3 for 6 , leading to e.g. : use of 5.7 leads to $32.4(\mathrm{~m})$ |
| :--- |
| use of 5.8 leads to 32.6 (m) |
| use of 5.9 leads to 32.8 (m) |
| use of 6.1 leads to 33.2 (m) |
| use of 6.2 leads to 33.4 (m) |
| use of 6.3 leads to 33.6 (m) |
| M1 only if 1 reading incorrect |
| FT from M1 |

\hline 10(c) Alternative method:

$$
\begin{gathered}
\frac{0+1.5}{2} \times 2+\frac{1.5+3}{2} \times 2+\frac{3+6}{2} \times 2+\frac{6+12}{2} \times 2 \\
{[1.5+4.5+9+18]}
\end{gathered}
$$

$$
=33(\mathrm{~m})
$$ \& M2

A1 \& | Allow use of $5.7 \leq$ speed ≤ 6.3 for 6 leading to e.g.: use of 5.7 leads to $(1.5+4.5+8.7+17.7=) 32.4(\mathrm{~m})$ use of 5.8 leads to $(1.5+4.5+8.8+17.8=) 32.6(\mathrm{~m})$ use of 5.9 leads to $(1.5+4.5+8.9+17.9=) 32.8(\mathrm{~m})$ use of 6.1 leads to $(1.5+4.5+9.1+18.1=) 33.2(\mathrm{~m})$ use of 6.2 leads to $(1.5+4.5+9.2+18.2=) 33.4(\mathrm{~m})$ use of 6.3 leads to $(1.5+4.5+9.3+18.3=) 33.6(\mathrm{~m})$ |
| :--- |
| M1 for the sum of these 4 areas with one error (possibly repeated) in reading the scale OR M1 for 3 of the 4 areas (1.5, 4.5, 9, 18) shown in a sum where not all calculations shown |
| FT from M1 |

\hline | $\begin{aligned} & 10(d) \\ & \frac{1}{2} \times(12+v) \times(16-8)+\frac{1}{2} \times(v+v+1) \times(48-16)=550 \end{aligned}$ |
| :--- |
| or equivalent $48+4 v+16 v+16 v+16=550 \quad \text { or equivalent }$ |
| (Speed at $\mathrm{t}=16$ seconds is) 13.5 or $13^{1 / 2} 2(\mathrm{~m} / \mathrm{s})$ | \& M2

m1

A1 \& | Accept any letter or symbol for v v is speed at $t=16$ seconds |
| :--- |
| M1 for |
| - $1 / 2 \times(12+\mathrm{v}) \times 8 \quad(+\ldots)=.550 \quad$ OR |
| - $(\ldots .+) \quad 1 / 2 \times(v+v+1) \times 32=550 \quad$ OR |
| - $1 / 2 \times(12+v) \times 8+1 / 2 \times(v+v+1) \times 32$ $\text { e.g. } 96+8 v+32 v+32 v+32=1100$ |
| FT from M1 |
| For appropriately expanding the brackets, and dealing with the fractions |
| CAO. An unsupported answer of $13.5(\mathrm{~m} / \mathrm{s})$ is awarded MOm0A0 |

\hline
\end{tabular}

