GCSE MARKING SCHEME

SUMMER 2022

GCSE
MATHEMATICS - COMPONENT 1
(HIGHER TIER) C300UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2022 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

EDUQAS GCSE MATHEMATICS

SUMMER 2022 MARK SCHEME

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
4.* (a) \\
Uniform scale used on vertical axis \\
Line starting at \((0,225)\) \\
Single straight line with correct gradient si \\
Ruled, single straight line ending at \((45,0)\)
\end{tabular} \& B1
B1
B1

B1 \& | Plots accurate to within $1 / 2$ a small square but mark intent |
| :--- |
| Must allow plots up to 225 litres and start at zero |
| According to their scale |
| e.g. single straight line passing through any two of $(10,175),(20,125),(30,75),(40,25),(45,0)$ according to their scale |
| or line drawn using e.g. 50 litres $=10$ minutes to plot and join points |

\hline \[
$$
\begin{aligned}
& \text { 4. (b) } \\
& (225 \div 10) \times 6 \text { or } 135 \text { OR } \\
& (225 \div 10) \times 4 \text { or } 90 \text { OR } \\
& (225 \div 10) \times 4 \div 5 \text { or }(45 \div 10) \times 4 \text { oe } \\
& 18 \text { (minutes) }
\end{aligned}
$$

\] \& M1 \& | Ignore units if stated |
| :--- |
| Equivalent calculations for M1 e.g. $\begin{aligned} & (50 \%+10 \%=) 112.5+22.5 \text { or } \\ & (50 \%-10 \%=) 112.5-22.5 \end{aligned}$ |
| if 90 or 135 found and using correct graph accept 17-19 mins |
| FT 'their single straight line' read at a volume = 135 providing that it has negative gradient; allow good freehand here |
| Accept 18 mins even if graph incorrect as can be done without it e.g. $90 \div 5$ |
| 18 (mins) without working implies M1 A1 |

\hline \& (6) \&

\hline | 5. ${ }^{*}(\mathrm{a})$ |
| :--- |
| 0.7 AND |
| 0.9 correctly placed | \& B1 \&

\hline 5. (b)

\[
$$
\begin{aligned}
& 0.6 \times 0.3 \text { oe } \\
& 0.18 \text { oe }
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& ignore attempts to convert to a different form; ignore embellishments such as unlikely, even if incorrect

\hline 5. (c)

\[
$$
\begin{aligned}
& 0.4 \times 0.1 \mathrm{oe} \\
& 0.04 \mathrm{oe}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 | \& ignore attempts to convert to a different form; ignore embellishments such as unlikely, even if incorrect

\hline \& (5) \&

\hline
\end{tabular}

7.*(a) $\begin{aligned} & 8 x^{2}-4 x+10 x-5 \\ & 8 x^{2}+6 x-5 \end{aligned}$	B2 B1	B1 for any two terms correct; $n x^{2}+6 x+m$ implies two terms correct if not from wrong working Implies previous B2; FT for equivalent level of difficulty, providing a quadratic expression with 4 terms to consider and like terms in x to collect with opposite signs mark final answer except ignore ' $=0$ '
7. (b)(i) $(x-3)(x-7) \text { oe }$	B2	If not B2, award B1 for $(x \ldots 3)(x \ldots 7)$ or for $x(x-7)-3(x-7)$ oe; ignore ' $=0$ ' If no marks, award SC1 for factors $x-3$ and $x-7$ stated but not as a product
$\text { 7. (b)(ii) } \begin{aligned} x=3, x=7 \end{aligned}$	B1	STRICT FT from 'their $(x \ldots a)(x \ldots b)$ ' where a and b are constants;
	(6)	

8. ${ }^{*}(a)$ (Proportion of marked moths in sample is) $\frac{9}{12}\left(=\frac{3}{4}\right)$ oe, si or (Proportion of 2nd sample marked is) $\frac{9}{30}\left(=\frac{3}{10}\right) \text { oe, si }$ Correct completion e.g. $\frac{9}{30}=\frac{12}{40}$ (so 40 moths) OR $\frac{9}{12}=\frac{30}{40}$ (so 40 moths) OR 75% (of population) is 30 (moths) so 100% (of population) is $30+10=40$ (moths) oe	B1	Allow for e.g. '9 out of 12 (marked)' or '9 (marked) out of 30' allow for sight of e.g. $\frac{12 \times 30}{9}(=40)$ Implies the first B1; Allow for - showing ' 12 out of 40 ' and ' 9 out of 30 ' are both ' 3 out of 10' or - $\frac{9}{12}=\frac{30}{x}$ and $9 x=360, x=40$ oe $N B \frac{12 \times 30}{9}=\frac{360}{9}=40$ is $B 2$
8. (b) Valid comment based on sample or population size e.g. 'It may not be very reliable as he only captured 12 moths in his first sample.' or 'Some of the moths may have been eaten so the results may not be accurate.'	E1	Allow e.g. 'Not reliable because the population would be bigger at different times of the year.' Allow comments which refer to the experiment needing to be repeated E1 for e.g. 'Somewhat reliable because it was done once and it could be different if repeated again' or 'Not reliable as he needs to do it more often.' Must not contain contradictions/errors but may contain irrelevant statements E0 for e.g. 'Not very reliable as there could have been more moths.' or 'Unlikely (to be reliable) because it has only been tested twice' or 'Not reliable because he could keep catching the same moths over and over.'
	(3)	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
9. \\
Use of \(110 \%\) (of original price) is 8690 \\
A calculation for an appropriate percentage of the original price \\
e.g.(\(10 \%\) of original price is) \(\frac{8690}{11}\) or \\
(\(1 \%\) of original price is) \(\frac{8690}{110}\) or (original price is) \(\frac{8690}{1.1}\) oe \\
(£)7900
\end{tabular} \& S1
B1

B1 \& | e.g. $x \times 1.1=8690$ |
| :--- |
| Need not evaluate calculation but the calculation stated must be the correct one for the \% claimed; may be in stages |
| CAO; implies 3 marks |

\hline \& (3) \&

\hline | 10.(a) |
| :--- |
| Method to find prime factors with two correct prime factors seen $2,3,3,3,7$ $2 \times 3^{3} \times 7$ | \& M1

A1

B1 \& | Implied by 2, 3, 3, 3, 7; ignore 1s |
| :--- |
| CAO. For sight of the 5 correct factors (Ignore 1's); may be in e.g. a factor tree |
| FT 'their derived primes' provided at least one index form used with at least a square dep on M1 previously awarded |
| Allow (2)(3 $\left.3^{3}\right)(7)$ and $2.3^{3} .7$ Inclusion of 1 as a factor gets B0. |

\hline | (b) |
| :--- |
| $378=2 \times 3^{3} \times 7$ or $2,3,3,3,7$ |
| AND |
| $275=5 \times 5 \times 11$ or finds prime factors of 275 as $5,5,11$ |
| OR |
| shows that 2,3 and 7 are not factors of 275 OR |
| shows that 5 and 11 are not factors of 378 |
| AND |
| a valid comment e.g. |
| 'They have no prime factors in common' oe | \& B2 \& | $378=2 \times 3^{3} \times 7$ or $2,3,3,3,7$ may be seen in |
| :--- |
| (a) |
| Valid comments: |
| allow e.g. |
| 'They have no factors in common (except 1).' or 'They only have 1 in common'; |
| do not allow e.g. |
| ' 1 is the only common prime factor' |
| B1 for partially correct proof e.g. |
| - $275=5 \times 5 \times 11$ OR |
| - Showing/stating that 2,3 and 7 are not factors of 275 OR |
| - Showing/stating that 5 and 11 are not factors of 378 |

\hline \& (5) \&

\hline
\end{tabular}

11. (a)(i) Attempts OR $-\mathbf{O P}$ $\binom{4}{-4}$ as final answer	S1	Evidence may be seen on grid
(a) (ii) Attempts OP + OR $\binom{6}{2}$ as final answer	Not from wrong working	

13. $\left(2.16 \times 10^{7}\right) \div\left(3 \times 10^{3}\right)$ or $21600000 \div 3000$	M2	M1 for $\left(2.16 \times 10^{7}\right) \div 3000$ or an appropriate division with a place value error e.g. $216000000 \div 3000$; implied by figs 72
7200 (people/km ${ }^{2}$) or 7.2×10^{3}	A1	CAO; accept 0.72×10^{4} Do not ignore further incorrect working e.g. $7.2 \times 10^{3}=72000 \text { is } \mathrm{AO}$
Y indicated and $(8000-7200=) 800$ (people/km²)	B1	FT 'their 7200' and the country that matches their values provided at least M1 previously awarded; answer must be given as an integer or correctly expressed in standard form.
	(4)	
14.		FT until second error; marks may be awarded in a different order
$a^{3} b+35=7 c \quad \text { or } \frac{a^{3} b}{7}=c-5$	B1	
$a^{3} b=7 c-35 \quad$ or $a^{3} b=7(c-5)$	B1	
$a^{3}=\frac{7 c-35}{b} \text { or } a^{3}=\frac{7(c-5)}{b}$	B1	
$a=\sqrt[3]{\frac{7 c-35}{b}} \quad \text { or } a=\sqrt[3]{\frac{7(c-5)}{b}}$	B1	Mark final answer
	(4)	

$\begin{aligned} & \text { 16.(a)(i) } \\ & 0.1,0.8,0.4,1.3,0.25 \end{aligned}$	B2	Allow fractions e.g. $\frac{5}{50}, \frac{8}{10}, \frac{12}{30}, \frac{13}{10}, \frac{5}{20}$ B1 for 3 or 4 correct Table takes precedence
(a)(ii) Fully correct histogram	B2	FT candidate's frequency density if table has arithmetic errors but the idea of frequency density is used e.g. $\frac{5}{50}, \frac{8}{10}, \frac{12}{30}, \frac{13}{10}, \frac{5}{20}$ si B1 for 3 or 4 correct bars; no gaps
$\begin{aligned} & \text { (a)(iii) } \\ & \frac{17}{43} \end{aligned}$	B2	B1 for $\frac{5+8+(12 \div 3)}{43}$ oe OR B1 for $5+8+4$ or 17 seen
(b) $\begin{aligned} & 0.4 \times 50+(1 \times) 10+0.3 \times 40+0.2 \times 20 \\ & 46 \end{aligned}$	M1 A1	$20+10+12+4$ si; allow one error
(c) Brian indicated with a supporting comparison. e.g. 'Brian has 30 trees less than 260 cm Yvonne has 13.' or 'Yvonne has 5 of the smallest trees and Brian has 20'	E1	FT 'their (b)'; dep on at least M1 in part (b) Allow e.g. 'Brian because he has more trees that are below 260 cm ' or 'Brian as he has a greater probability of having trees less than 270' or 'Brian as Yvonne has fewer trees less than 260' or 'Brian has (their) 20 and Yvonne has 5 in the smallest group' Do not allow e.g. 'Brian because most of his trees are shorter than most of Yvonne's' or 'Brian as he has a larger amount of shorter trees'
	(9)	

17. $(h=) \sqrt{3} x$	B4	B3 for $h^{2}=3 x^{2}$ or $(h=) \sqrt{3 x^{2}}$ OR $(h=) \frac{2 x \sqrt{3}}{2}$ B2 for $(2 x)^{2}-x^{2}=h^{2}$; accept e.g. $(h=) \sqrt{(2 x)^{2}-x^{2}}$ OR $\frac{h}{2 x}=\frac{\sqrt{3}}{2}$ OR $h^{2}=(2 x)^{2}+x^{2}-\frac{2(2 x)(x)}{2}$ or $(h=) \sqrt{(2 x)^{2}+x^{2}-\frac{2(2 x)(x)}{2}}$ allow e.g. $(h=) \sqrt{2 x^{2}-x^{2}}$ or $h^{2}=2 x^{2}-x^{2}$ or $(2 x)^{2}-y^{2}=h^{2} \text { OR }$ $h^{2}=2 x^{2}+x^{2}-\frac{2(2 x)(x)}{2}$ or $(h=) \sqrt{2 x^{2}+x^{2}-\frac{2(2 x)(x)}{2}}$ B 1 for $x^{2}+h^{2}=(2 x)^{2}$; allow e.g. $x^{2}+h^{2}=2 x^{2}$ or $y^{2}+h^{2}=(2 x)^{2}$ or $2 x^{2}-y^{2}=h^{2}$ or $(h=) \sqrt{2 x^{2}-y^{2}}$ OR $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$ or $\sin 60^{\circ}=\frac{h}{2 x}$ OR $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$ or $\cos 30^{\circ}=\frac{h}{2 x}$ OR $h^{2}=(2 x)^{2}+x^{2}-2(2 x)(x) \cos 60$ or $(h=) \sqrt{(2 x)^{2}+x^{2}-2(2 x)(x) \cos 60}$ or $h^{2}=2 x^{2}+x^{2}-2(2 x)(x) \cos 60$ or $(h=) \sqrt{2 x^{2}+x^{2}-2(2 x)(x) \cos 60}$
	(4)	

\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
\& 18 .(\mathrm{a}) \\
\& 5^{7}
\end{aligned}
\] \& B1 \& mark final answer \\
\hline (b)
\[
\begin{aligned}
\& (\sqrt[4]{10000})^{3} \text { or } \sqrt[4]{10000^{3}} \text { si } \\
\& 1000
\end{aligned}
\] \& B1
B1 \& First correct step implied by sight of \(10^{3}\) or \(\sqrt[4]{1000000000000}\) \\
\hline (c)
\[
7 \times 10^{n}
\] \& B2 \& B1 for \(49^{\frac{1}{2}} \times\left(10^{2 n}\right)^{\frac{1}{2}}\) or \(\sqrt{49} \times\left(10^{2 n}\right)^{\frac{1}{2}}\) oe \\
\hline \& (5) \& \\
\hline \[
\begin{aligned}
\& \text { 19.(a) } \\
\& 0.037 \text { ISW }
\end{aligned}
\] \& B1 \& Allow 0.037037... or \(0.0 ் 3 \dot{7}\) or 0.0370 ¢ \\
\hline \begin{tabular}{l}
(b)
\[
1000 x-10 x=1243 \cdot \dot{4} \dot{3}-12 \cdot \dot{4} \dot{3}
\] \\
(990x = 1231) oe, si; \\
OR \\
(1.2 plus) \(1000 x-10 x=43 \cdot \dot{4} \dot{3}-0 \cdot \dot{4} \dot{3}\) \\
(1.2 plus) \((990 x=43)\) oe, si
\[
\frac{1231}{990}
\]
\[
\frac{1231}{990}-\frac{880}{990}
\]
\[
\frac{351}{990} \text { oe, ISW }
\]
\end{tabular} \& M1
A1

m1

A1 \& | Allow for $100 x-x=124 \cdot 3 \dot{4} \dot{3}-1 \cdot 2 \dot{4} \dot{3}$ (99x = 123.1) oe, si |
| :--- |
| CAO; may be embedded e.g. $\frac{1231}{990}-\frac{8}{9}$; implies M1 |
| STRICT FT 'their $\frac{1231}{990}$, or $\frac{1188}{990}+$ their $\frac{43}{990}$ |
| CAO $\frac{39}{110}$ |

\hline \& (5) \&

\hline 20. (a) $h\left(\frac{1}{6}\right)$ or $\left(\frac{1}{6}\right)^{3}$ OR $h g(x)=\frac{x^{3}}{8}$ oe

$$
\frac{1}{216}
$$ \& M1

A1 \& | must be $\frac{1}{6}$ |
| :--- |
| OR |
| Accept e.g. $\lg (x)=\left(\frac{x}{2}\right)^{3}$ |
| Allow e.g. $h g \rightarrow\left(\frac{x}{2}\right)^{3}$ or any clear indication they know what the function is |
| If no marks, SC1 for 'their $\frac{\frac{1}{3}}{2}$ ' correctly cubed, as final answer providing they have shown $\frac{\frac{1}{3}}{2}$ or exact equivalent |

\hline (b) $h^{-1}(x)=\sqrt[3]{x}$ or $x=h(-2)$ or $(-2)^{3}$

$$
(x=)-8
$$ \& M1

A1 \&

\hline \& (4) \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
23.(a) \\
\(35 \times 3-28 \sqrt{3}+3 \sqrt{3}\) or better
\[
105-25 \sqrt{3}
\]
\end{tabular} \& M2
A1 \& \begin{tabular}{l}
with at most one sign or arithmetic slip \\
M1 for any one of \(105,-28 \sqrt{3}, 3 \sqrt{3}\) si \\
Allow e.g. \(-25 \sqrt{3}+105\);
\end{tabular} \\
\hline \begin{tabular}{l}
(b)
\[
2(6-\sqrt{2})+x \times 5 \sqrt{2} \quad(=33 \sqrt{2}-18) \mathrm{si}
\] \\
Forms a correct equation for the area and either isolates \(x\) term:
\[
5 x \sqrt{2}=33 \sqrt{2}-18-12+2 \sqrt{2}
\] \\
or collects terms: \(30+5 x \sqrt{2}=35 \sqrt{2}\)
\[
\begin{aligned}
\& (x=) \frac{35 \sqrt{2}-30}{5 \sqrt{2}} \text { or }(x=) 7-\frac{6}{\sqrt{2}} \\
\& (x=) \frac{35 \sqrt{2}-30}{5 \sqrt{2}} \times \frac{5 \sqrt{2}}{5 \sqrt{2}} \text { or }(x=) \\
\& 7-\frac{6}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \text { oe } \\
\& (x=) 7-3 \sqrt{2}
\end{aligned}
\]
\end{tabular} \& B1
M1

A1
M1

A1 \& | or $2(6-\sqrt{2}-x)+x(5 \sqrt{2}+2) \quad(=33 \sqrt{2}-18)$ si omitted brackets may be recovered in later work |
| :--- |
| FT 'their $2(6-\sqrt{2})_{+} x \times 5 \sqrt{2}$ ' $=33 \sqrt{2}-18$ oe providing expression is dimensionally correct for an area and at most one error in the expression; |
| allow one further error in forming and rearranging the equation e.g. sign, bracketing or arithmetic slip correct equation implies the B1 FT; |
| FT 'their expression with irrational denominator' providing 1 mark previously awarded |
| CAO; Mark final answer |

\hline \& (8) \&

\hline 24. (a) 20 (units) \& B1 \& Ignore any units if stated

\hline \[
$$
\begin{aligned}
& \text { (b) } \\
& B(-12,16)
\end{aligned}
$$

\] \& B2 \& | Allow brackets omitted; allow $x=-12, y=16$ |
| :--- |
| B1 for each coordinate OR |
| B1 for ($12-24,-16+32$) oe seen OR |
| B1 for $(-12)^{2}+16^{2}=400$ |
| If no marks award SC1 for a sketch of a circle , centre (0,0) with A marked in the correct quadrant |

\hline \& (3) \&

\hline
\end{tabular}

25. $\begin{aligned} & \frac{v-6}{15-5} \\ & \frac{v-6}{15-5}=0.5 \\ & (v=) 11(\mathrm{~m} / \mathrm{s}) \end{aligned}$	S1 M1 A1	Forms a gradient in terms of v $\text { FT 'their } \frac{\text { vertical diff }}{\text { horizontal diff }} \text {; implies the S1 }$
Alternative method 1 $\begin{aligned} & v=u+a t \text { with } u=6, a=0.5, t=10 \\ & 6+(0.5)(10) \\ & (v=) 11(\mathrm{~m} / \mathrm{s}) \end{aligned}$	S1 M1 A1	Implies the S1
Alternative method 2 Right-angled triangle drawn with horizontal 10 marked or use of $\begin{aligned} & a=\frac{\text { change in } v}{\text { change in } t} \\ & 0.5 \times 10(+6) \\ & (v=) 11(\mathrm{~m} / \mathrm{s}) \end{aligned}$	S1 M1 A1	Implies the S1
Alternative method 3 $v=0.5 t+3.5$ $\begin{aligned} & v=0.5(15)+3.5 \\ & (v=) 11(\mathrm{~m} / \mathrm{s}) \end{aligned}$	S1 M1 A1	Finds the equation of the line; allow in terms of y and x : $\begin{aligned} & (y=v, x=t) \\ & y=0.5 x+c \\ & 6=0.5(5)+c \\ & c=3.5 \end{aligned}$
	(3)	

